STRINGSTRING
AMQ41504.1 AMQ41504.1 AMQ42050.1 AMQ42050.1 AMQ42051.1 AMQ42051.1 AMQ42052.1 AMQ42052.1 frdA frdA sdhC sdhC sdhD sdhD sdhA sdhA sdhB sdhB sucC sucC sucD sucD prpD prpD AMQ42630.1 AMQ42630.1 prpB prpB AMQ43096.1 AMQ43096.1 AMQ43188.1 AMQ43188.1 AMQ43260.1 AMQ43260.1 AMQ44138.1 AMQ44138.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AMQ41504.1Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (865 aa)
AMQ42050.1Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (118 aa)
AMQ42051.1Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane; Belongs to the FrdC family. (132 aa)
AMQ42052.1Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa)
frdAPart of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (594 aa)
sdhCSuccinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (134 aa)
sdhDSuccinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (114 aa)
sdhAPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa)
sdhBPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)
sucCsuccinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa)
sucDsuccinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (290 aa)
prpD2-methylcitrate dehydratase; Functions in propionate metabolism; involved in isomerization of (2S,3S)-methylcitrate to (2R,3S)-methylisocitrate; also encodes minor aconitase or dehydratase activity; aconitase C; Derived by automated computational analysis using gene prediction method: Protein Homology. (481 aa)
AMQ42630.1Catalyzes the synthesis of 2-methylcitrate from propionyl-CoA and oxaloacetate; also catalyzes the condensation of oxaloacetate with acetyl-CoA but with a lower specificity; Derived by automated computational analysis using gene prediction method: Protein Homology. (375 aa)
prpB2-methylisocitrate lyase; Catalyzes the thermodynamically favored C-C bond cleavage of (2R,3S)-2-methylisocitrate to yield pyruvate and succinate. Belongs to the isocitrate lyase/PEP mutase superfamily. Methylisocitrate lyase family. (295 aa)
AMQ43096.1Aromatic amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa)
AMQ43188.1Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa)
AMQ43260.1Aminotransferase; Broad specificity; family IV; in Corynebacterium glutamicum this protein can use glutamate, 2-aminobutyrate, and aspartate as amino donors and pyruvate as the acceptor; Derived by automated computational analysis using gene prediction method: Protein Homology. (404 aa)
AMQ44138.1Isocitrate dehydrogenase; Catalyzes the formation of 2-oxoglutarate from isocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology. (335 aa)
Your Current Organism:
Aeromonas veronii
NCBI taxonomy Id: 654
Other names: A. veronii, ATCC 35624, ATCC 49904 [[Aeromonas ichthiosmia]], Aeromonas culicicola, Aeromonas culicicola Pidiyar et al. 2002, Aeromonas hybridization group 10 (HG10), Aeromonas ichthiosmia, Aeromonas sp. G18, Aeromonas sp. R1, Aeromonas sp. R9, Aeromonas sp. TH074, Aeromonas sp. TH076, CCUG 27821, CECT 4257, CECT 4486 [[Aeromonas ichthiosmia]], CIP 103438, CIP 104613 [[Aeromonas ichthiosmia]], CIP 107763 [[Aeromonas culicicola]], DSM 6393 [[Aeromonas ichthiosmia]], DSM 7386, Enteric Group 77, JCM 7375, JCM 8354 [[Aeromonas ichthiosmia]], LMG 12645 [[Aeromonas ichthiosmia]], LMG:12645 [[Aeromonas ichthiosmia]], MTCC 3249 [[Aeromonas culicicola]], NCIMB 13205 [[Aeromonas ichthiosmia]], NICM 5147 [[Aeromonas culicicola]], strain 115/II [[Aeromonas ichthiosmia]]
Server load: low (36%) [HD]