Your Input: | |||||
AMQ44613.1 | Aspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the homoserine dehydrogenase family. (818 aa) | ||||
mdh | Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (311 aa) | ||||
leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (361 aa) | ||||
AMQ43806.1 | Alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa) | ||||
AMQ40909.1 | Catalyzes the formation of S-formylglutathione from S-(hydroxymethyl)glutathione; also catalyzes the formation of aldehyde or ketone from alcohols; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily. (375 aa) | ||||
AMQ43202.1 | Alcohol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa) | ||||
AMQ43188.1 | Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa) | ||||
pdxA | 4-hydroxythreonine-4-phosphate dehydrogenase; Catalyzes the NAD(P)-dependent oxidation of 4-(phosphooxy)-L- threonine (HTP) into 2-amino-3-oxo-4-(phosphooxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP). (331 aa) | ||||
AMQ44321.1 | UDP-glucose 6-dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (459 aa) | ||||
ribD | 5-amino-6-(5-phosphoribosylamino)uracil reductase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (369 aa) | ||||
AMQ44148.1 | 2-dehydropantoate 2-reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. (317 aa) | ||||
AMQ44138.1 | Isocitrate dehydrogenase; Catalyzes the formation of 2-oxoglutarate from isocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology. (335 aa) | ||||
AMQ43173.1 | Acetaldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the iron-containing alcohol dehydrogenase family. (888 aa) | ||||
AMQ43156.1 | D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (410 aa) | ||||
pdxB | Erythronate-4-phosphate dehydrogenase; Catalyzes the oxidation of erythronate-4-phosphate to 3- hydroxy-2-oxo-4-phosphonooxybutanoate. (373 aa) | ||||
guaB | Inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (487 aa) | ||||
AMQ42796.1 | 3-hydroxyisobutyrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the HIBADH-related family. (300 aa) | ||||
fadJ | Multifunctional fatty acid oxidation complex subunit alpha; Catalyzes the formation of a hydroxyacyl-CoA by addition of water on enoyl-CoA. Also exhibits 3-hydroxyacyl-CoA epimerase and 3- hydroxyacyl-CoA dehydrogenase activities. In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (715 aa) | ||||
hisD | Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (441 aa) | ||||
fadB | Multifunctional fatty acid oxidation complex subunit alpha; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (715 aa) | ||||
AMQ42361.1 | Glycerol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (372 aa) | ||||
AMQ42028.1 | Glycerate dehydrogenase; Catalyzes the reduction of hydroxypyruvate to form D-glycerate, using NADH as an electron donor; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (318 aa) | ||||
AMQ42171.1 | Malate dehydrogenase; Malic enzyme; oxaloacetate-decarboxylating; NAD-dependent; catalyzes the formation of pyruvate form malate; Derived by automated computational analysis using gene prediction method: Protein Homology. (571 aa) | ||||
aroE | Shikimate dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (273 aa) | ||||
AMQ44864.1 | Aldehyde reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (387 aa) | ||||
murB | UDP-N-acetylenolpyruvoylglucosamine reductase; Cell wall formation. (345 aa) | ||||
ilvC | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (493 aa) | ||||
tdh | L-threonine 3-dehydrogenase; Catalyzes the NAD(+)-dependent oxidation of L-threonine to 2- amino-3-ketobutyrate; Belongs to the zinc-containing alcohol dehydrogenase family. (342 aa) | ||||
AMQ41192.1 | Lactate dehydrogenase; Fermentative; catalyzes the formationof pyruvate from lactate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa) | ||||
AMQ41219.1 | Malate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (413 aa) | ||||
gpsA | Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (334 aa) | ||||
AMQ41569.1 | Aldehyde reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa) | ||||
gldA | Glycerol dehydrogenase; Forms dimers and octamers; involved in conversion of glycerol to dihydroxy-acetone; Derived by automated computational analysis using gene prediction method: Protein Homology. (360 aa) | ||||
mtlD | Mannitol-1-phosphate 5-dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa) | ||||
AMQ41636.1 | 2-hydroxyacid dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (314 aa) | ||||
dxr | 1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4- phosphate (MEP); Belongs to the DXR family. (398 aa) | ||||
AMQ44028.1 | Malate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (516 aa) | ||||
maeA | Malate dehydrogenase; Malic enzyme; oxaloacetate-decarboxylating; NAD-dependent; catalyzes the formation of pyruvate form malate; Derived by automated computational analysis using gene prediction method: Protein Homology. (564 aa) | ||||
thrA | Aspartate kinase; Multifunctional homotetrameric enzyme that catalyzes the phosphorylation of aspartate to form aspartyl-4-phosphate as well as conversion of aspartate semialdehyde to homoserine; functions in a number of amino acid biosynthetic pathways; Derived by automated computational analysis using gene prediction method: Protein Homology. (819 aa) | ||||
AMQ43866.1 | dTDP-4-dehydrorhamnose reductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose; Belongs to the dTDP-4-dehydrorhamnose reductase family. (295 aa) |