STRINGSTRING
atpD atpD rpoD rpoD dnaJ dnaJ AMQ42630.1 AMQ42630.1 gltA gltA recA recA AMQ41050.1 AMQ41050.1 gyrA gyrA gyrB gyrB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpDATP synthase F0F1 subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (462 aa)
rpoDRNA polymerase subunit sigma-70; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (618 aa)
dnaJMolecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (380 aa)
AMQ42630.1Catalyzes the synthesis of 2-methylcitrate from propionyl-CoA and oxaloacetate; also catalyzes the condensation of oxaloacetate with acetyl-CoA but with a lower specificity; Derived by automated computational analysis using gene prediction method: Protein Homology. (375 aa)
gltAType II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (428 aa)
recARecombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (354 aa)
AMQ41050.1ADP-ribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (511 aa)
gyrADNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (915 aa)
gyrBDNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (803 aa)
Your Current Organism:
Aeromonas veronii
NCBI taxonomy Id: 654
Other names: A. veronii, ATCC 35624, ATCC 49904 [[Aeromonas ichthiosmia]], Aeromonas culicicola, Aeromonas culicicola Pidiyar et al. 2002, Aeromonas hybridization group 10 (HG10), Aeromonas ichthiosmia, Aeromonas sp. G18, Aeromonas sp. R1, Aeromonas sp. R9, Aeromonas sp. TH074, Aeromonas sp. TH076, CCUG 27821, CECT 4257, CECT 4486 [[Aeromonas ichthiosmia]], CIP 103438, CIP 104613 [[Aeromonas ichthiosmia]], CIP 107763 [[Aeromonas culicicola]], DSM 6393 [[Aeromonas ichthiosmia]], DSM 7386, Enteric Group 77, JCM 7375, JCM 8354 [[Aeromonas ichthiosmia]], LMG 12645 [[Aeromonas ichthiosmia]], LMG:12645 [[Aeromonas ichthiosmia]], MTCC 3249 [[Aeromonas culicicola]], NCIMB 13205 [[Aeromonas ichthiosmia]], NICM 5147 [[Aeromonas culicicola]], strain 115/II [[Aeromonas ichthiosmia]]
Server load: low (20%) [HD]