STRINGSTRING
aceE aceE aceF aceF AMQ41500.1 AMQ41500.1 AMQ41504.1 AMQ41504.1 AMQ42050.1 AMQ42050.1 AMQ42051.1 AMQ42051.1 AMQ42052.1 AMQ42052.1 frdA frdA gltA gltA sdhC sdhC sdhD sdhD sdhA sdhA sdhB sdhB AMQ42372.1 AMQ42372.1 AMQ42373.1 AMQ42373.1 sucC sucC sucD sucD AMQ42669.1 AMQ42669.1 AMQ43188.1 AMQ43188.1 AMQ43724.1 AMQ43724.1 AMQ43725.1 AMQ43725.1 pdhA pdhA AMQ43776.1 AMQ43776.1 AMQ44138.1 AMQ44138.1 mdh mdh pckA pckA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
aceEPyruvate dehydrogenase; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (886 aa)
aceFPyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (628 aa)
AMQ41500.1E3 component of pyruvate and 2-oxoglutarate dehydrogenase complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa)
AMQ41504.1Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase; Catalyzes the conversion of citrate to isocitrate and the conversion of 2-methylaconitate to 2-methylisocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aconitase/IPM isomerase family. (865 aa)
AMQ42050.1Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (118 aa)
AMQ42051.1Fumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane; Belongs to the FrdC family. (132 aa)
AMQ42052.1Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (244 aa)
frdAPart of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology. (594 aa)
gltAType II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the citrate synthase family. (428 aa)
sdhCSuccinate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (134 aa)
sdhDSuccinate dehydrogenase; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (114 aa)
sdhAPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa)
sdhBPart of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (238 aa)
AMQ42372.12-oxoglutarate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (935 aa)
AMQ42373.1Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (396 aa)
sucCsuccinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa)
sucDsuccinyl-CoA synthetase subunit alpha; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (290 aa)
AMQ42669.1Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family. (508 aa)
AMQ43188.1Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa)
AMQ43724.1Branched-chain alpha-keto acid dehydrogenase subunit E2; Derived by automated computational analysis using gene prediction method: Protein Homology. (366 aa)
AMQ43725.12-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (328 aa)
pdhAABC transporter permease; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3). (362 aa)
AMQ43776.1Pyruvate-flavodoxin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1191 aa)
AMQ44138.1Isocitrate dehydrogenase; Catalyzes the formation of 2-oxoglutarate from isocitrate; Derived by automated computational analysis using gene prediction method: Protein Homology. (335 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (311 aa)
pckAPhosphoenolpyruvate carboxykinase; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. Belongs to the phosphoenolpyruvate carboxykinase (ATP) family. (541 aa)
Your Current Organism:
Aeromonas veronii
NCBI taxonomy Id: 654
Other names: A. veronii, ATCC 35624, ATCC 49904 [[Aeromonas ichthiosmia]], Aeromonas culicicola, Aeromonas culicicola Pidiyar et al. 2002, Aeromonas hybridization group 10 (HG10), Aeromonas ichthiosmia, Aeromonas sp. G18, Aeromonas sp. R1, Aeromonas sp. R9, Aeromonas sp. TH074, Aeromonas sp. TH076, CCUG 27821, CECT 4257, CECT 4486 [[Aeromonas ichthiosmia]], CIP 103438, CIP 104613 [[Aeromonas ichthiosmia]], CIP 107763 [[Aeromonas culicicola]], DSM 6393 [[Aeromonas ichthiosmia]], DSM 7386, Enteric Group 77, JCM 7375, JCM 8354 [[Aeromonas ichthiosmia]], LMG 12645 [[Aeromonas ichthiosmia]], LMG:12645 [[Aeromonas ichthiosmia]], MTCC 3249 [[Aeromonas culicicola]], NCIMB 13205 [[Aeromonas ichthiosmia]], NICM 5147 [[Aeromonas culicicola]], strain 115/II [[Aeromonas ichthiosmia]]
Server load: low (24%) [HD]