node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
DSJ_01810 | DSJ_01815 | DSJ_01810 | DSJ_01815 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.990 |
DSJ_01810 | DSJ_19635 | DSJ_01810 | DSJ_19635 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine/threonine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.920 |
DSJ_01810 | ilvA | DSJ_01810 | DSJ_01795 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | PLP-dependent threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | 0.975 |
DSJ_01810 | ilvC | DSJ_01810 | DSJ_01785 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 0.953 |
DSJ_01810 | ilvH | DSJ_01810 | DSJ_06170 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.940 |
DSJ_01810 | ilvI | DSJ_01810 | DSJ_06165 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acetolactate synthase 3 large subunit; Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.949 |
DSJ_01810 | leuA | DSJ_01810 | DSJ_06160 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. | 0.821 |
DSJ_01810 | leuB | DSJ_01810 | DSJ_06155 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. | 0.909 |
DSJ_01810 | yeaU | DSJ_01810 | DSJ_03575 | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Tartrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.909 |
DSJ_01815 | DSJ_01810 | DSJ_01815 | DSJ_01810 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acetolactate synthase 2 small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.990 |
DSJ_01815 | DSJ_19635 | DSJ_01815 | DSJ_19635 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Serine/threonine dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.937 |
DSJ_01815 | ilvA | DSJ_01815 | DSJ_01795 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | PLP-dependent threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. | 0.972 |
DSJ_01815 | ilvC | DSJ_01815 | DSJ_01785 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. | 0.974 |
DSJ_01815 | ilvH | DSJ_01815 | DSJ_06170 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.997 |
DSJ_01815 | ilvI | DSJ_01815 | DSJ_06165 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Acetolactate synthase 3 large subunit; Catalyzes the formation of 2-acetolactate from pyruvate, leucine sensitive; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.908 |
DSJ_01815 | leuA | DSJ_01815 | DSJ_06160 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. | 0.963 |
DSJ_01815 | leuB | DSJ_01815 | DSJ_06155 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. | 0.976 |
DSJ_01815 | leuC | DSJ_01815 | DSJ_06150 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. | 0.739 |
DSJ_01815 | leuD | DSJ_01815 | DSJ_06145 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | 3-isopropylmalate dehydratase small subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. | 0.766 |
DSJ_01815 | yeaU | DSJ_01815 | DSJ_03575 | Acetolactate synthase 2 catalytic subunit; Catalyzes the formation of 2-acetolactate from pyruvate; also known as acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. | Tartrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.940 |