Your Input: | |||||
DSJ_15970 | Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DegT/DnrJ/EryC1 family. (367 aa) | ||||
DSJ_17085 | Aminotransferase; Broad specificity; family IV; in Corynebacterium glutamicum this protein can use glutamate, 2-aminobutyrate, and aspartate as amino donors and pyruvate as the acceptor; Derived by automated computational analysis using gene prediction method: Protein Homology. (405 aa) | ||||
rffA | dTDP-4-amino-4,6-dideoxygalactose transaminase; Catalyzes the synthesis of dTDP-4-amino-4,6-dideoxy-D- galactose (dTDP-Fuc4N) from dTDP-4-keto-6-deoxy-D-glucose (dTDP-D- Glc4O) and L-glutamate; Belongs to the DegT/DnrJ/EryC1 family. (376 aa) | ||||
puuE | 4-aminobutyrate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (420 aa) | ||||
DSJ_18150 | Alanine transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (411 aa) | ||||
DSJ_19520 | Derived by automated computational analysis using gene prediction method: Protein Homology. (411 aa) | ||||
ybdL | Methionine aminotransferase; Catalyzes the transfer of an amino moiety; preference for methionine followed by histidine and phenylalanine; Derived by automated computational analysis using gene prediction method: Protein Homology. (386 aa) | ||||
metC | Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa) | ||||
DSJ_21105 | Pyridoxal-dependent decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (517 aa) | ||||
DSJ_21040 | Ornithine decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (716 aa) | ||||
argD | Hypothetical protein; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (406 aa) | ||||
yjiR | GntR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (512 aa) | ||||
metB | Catalyzes the formation of cystathionine from L-cysteine and O-succinyl-L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology. (386 aa) | ||||
tyrB | Catalyzes the formation of L-glutamate and an aromatic oxo acid from an aromatic amino acid and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology. (397 aa) | ||||
gcvP | Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (957 aa) | ||||
csdA | Cysteine sulfinate desulfinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (402 aa) | ||||
hemL | Glutamate-1-semialdehyde-2,1-aminomutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (426 aa) | ||||
DSJ_06725 | Lysine decarboxylase LdcC; Constitutive; catalyzes the formation of cadaverine from lysine; Derived by automated computational analysis using gene prediction method: Protein Homology. (718 aa) | ||||
glyA | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (417 aa) | ||||
iscS | IscS subfamily cysteine desulfurase; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. (386 aa) | ||||
bioA | Adenosylmethionine--8-amino-7-oxononanoate transaminase; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. (430 aa) | ||||
bioF | 8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide. (383 aa) | ||||
serC | Phosphoserine transaminase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (361 aa) | ||||
aspC | Aromatic amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa) | ||||
DSJ_11615 | 4-aminobutyrate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (437 aa) | ||||
astC | Porin OmpC; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (406 aa) | ||||
sufS | Bifunctional cysteine desulfurase/selenocysteine lyase; Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L- selenocysteine. Selenocysteine lyase activity is however unsure in vivo. (407 aa) | ||||
tnaA | Tryptophanase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the beta-eliminating lyase family. (468 aa) | ||||
DSJ_13315 | Aspartate aminotransferase family protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (453 aa) | ||||
DSJ_15350 | Aspartate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (380 aa) | ||||
hisC | Histidinol-phosphate transaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (356 aa) |