STRINGSTRING
ANP63578.1 ANP63578.1 carA carA carB carB thyA thyA purL purL purP purP glyA glyA purU purU folD folD purB purB purC purC purT purT ANP64604.1 ANP64604.1 pyrD pyrD pyrF pyrF purF purF pyrP pyrP purM purM purN purN ANP65595.1 ANP65595.1 pyrB pyrB pyrI pyrI fre fre purE purE purK purK xanP xanP pyrE pyrE ANP66794.1 ANP66794.1 codB codB gcvP gcvP gcvH gcvH glyA-2 glyA-2 gcvT gcvT fhs fhs ANP67374.1 ANP67374.1 pyrC pyrC purD purD purH purH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ANP63578.1Diacylglycerol kinase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. (159 aa)
carACarbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (379 aa)
carBCarbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1077 aa)
thyAThymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (283 aa)
purLPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1297 aa)
purPGuanine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (416 aa)
purUFormyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (277 aa)
folDBifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (286 aa)
purBAdenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (367 aa)
purTPhosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (391 aa)
ANP64604.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (283 aa)
pyrDDihydroorotate dehydrogenase (quinone); Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa)
pyrFOrotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (233 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (504 aa)
pyrPUracil permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (417 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (218 aa)
ANP65595.1DfrA family trimethoprim-resistant dihydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (157 aa)
pyrBAspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (309 aa)
pyrIAspartate carbamoyltransferase regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase. (153 aa)
freNAD(P)H-flavin reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (237 aa)
purE5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (161 aa)
purK5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (377 aa)
xanPXanthine permease XanP; High-affinity transporter for xanthine; Derived by automated computational analysis using gene prediction method: Protein Homology. (462 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa)
ANP66794.1Cytosine deaminase; Catalyzes the deamination of cytosine to uracil and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology. (425 aa)
codBCytosine permease; Derived by automated computational analysis using gene prediction method: Protein Homology. (412 aa)
gcvPGlycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. (954 aa)
gcvHGlycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. (126 aa)
glyA-2Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (431 aa)
gcvTGlycine cleavage system protein T; Catalyzes the transfer of a methylene carbon from the methylamine-loaded GcvH protein to tetrahydrofolate, causing the release of ammonia and the generation of reduced GcvH protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (372 aa)
fhsFormate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (582 aa)
ANP67374.1Dihydroorotase; Catalyzes the reversible hydrolysis of the amide bond within dihydroorotate. This metabolic intermediate is required for the biosynthesis of pyrimidine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology. (444 aa)
pyrCDihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (342 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (429 aa)
purHBifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (530 aa)
Your Current Organism:
Vibrio alginolyticus
NCBI taxonomy Id: 663
Other names: ATCC 17749, Beneckea alginolytica, CAIM 516, CCUG 13445, CCUG 16315, CCUG 4989, CIP 103336, CIP 75.3, DSM 2171, IFO 15630, LMG 4409, LMG:4409, NBRC 15630, NCCB 71013, NCCB 77003, NCTC 12160, Oceanomonas alginolytica, Pseudomonas creosotensis, V. alginolyticus, Vibrio sp. PeIg0901
Server load: low (28%) [HD]