node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
fhs | folD | BAU10_19310 | BAU10_03450 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | 0.994 |
fhs | gcvH | BAU10_19310 | BAU10_19185 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.489 |
fhs | gcvP | BAU10_19310 | BAU10_19180 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Glycine dehydrogenase (aminomethyl-transferring); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. | 0.781 |
fhs | gcvT | BAU10_19310 | BAU10_19200 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Glycine cleavage system protein T; Catalyzes the transfer of a methylene carbon from the methylamine-loaded GcvH protein to tetrahydrofolate, causing the release of ammonia and the generation of reduced GcvH protein; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.951 |
fhs | glyA | BAU10_19310 | BAU10_02595 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.961 |
fhs | glyA-2 | BAU10_19310 | BAU10_19190 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. | 0.961 |
fhs | purB | BAU10_19310 | BAU10_05030 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. | 0.616 |
fhs | purC | BAU10_19310 | BAU10_05605 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. | 0.884 |
fhs | purD | BAU10_19310 | BAU10_24245 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. | 0.728 |
fhs | purE | BAU10_19310 | BAU10_14880 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | 5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). | 0.701 |
fhs | purF | BAU10_19310 | BAU10_09970 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. | 0.867 |
fhs | purH | BAU10_19310 | BAU10_24250 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.989 |
fhs | purK | BAU10_19310 | BAU10_14885 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | 5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). | 0.455 |
fhs | purL | BAU10_19310 | BAU10_02355 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. | 0.943 |
fhs | purM | BAU10_19310 | BAU10_10465 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.481 |
fhs | purN | BAU10_19310 | BAU10_10470 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. | 0.974 |
fhs | purT | BAU10_19310 | BAU10_05775 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Phosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. | 0.900 |
fhs | purU | BAU10_19310 | BAU10_03375 | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). | 0.605 |
folD | fhs | BAU10_03450 | BAU10_19310 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Formate--tetrahydrofolate ligase; Catalyzes the formation of 10-formyltetrahydrofolate from formate and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. | 0.994 |
folD | gcvH | BAU10_03450 | BAU10_19185 | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. | Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein. | 0.579 |