Your Input: | |||||
ANP64532.1 | Metal-dependent hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (171 aa) | ||||
ANP64522.1 | Alpha-ribazole phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (204 aa) | ||||
purT | Phosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (391 aa) | ||||
ANP64511.1 | Phosphoribosylglycinamide formyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (259 aa) | ||||
purC | Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (367 aa) | ||||
ushA-2 | Bifunctional UDP-sugar hydrolase/5'-nucleotidase; Catalyzes the degradation of periplasmic UDP-glucose to uridine, glucose-1-phosphate and inorganic phosphate; specific for uridine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (562 aa) | ||||
tdk | Thymidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa) | ||||
purB | Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa) | ||||
ANP66446.1 | Citrate lyase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology. (490 aa) | ||||
udp_2 | Uridine phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (243 aa) | ||||
ANP67127.1 | Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (580 aa) | ||||
ANP67208.1 | Anaerobic ribonucleotide reductase-activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine. (156 aa) | ||||
ANP67209.1 | Anaerobic ribonucleoside-triphosphate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (706 aa) | ||||
ANP67227.1 | 3-hydroxy-3-methylglutaryl-CoA reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (420 aa) | ||||
ANP67233.1 | Nitrous oxide-stimulated promoter; Derived by automated computational analysis using gene prediction method: Protein Homology. (129 aa) | ||||
ANP67325.1 | Branched-chain alpha-keto acid dehydrogenase subunit E2; Derived by automated computational analysis using gene prediction method: Protein Homology. (382 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (397 aa) | ||||
ANP67414.1 | Alkaline phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (589 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (287 aa) | ||||
ANP67562.1 | Nicotinate-nicotinamide nucleotide adenylyltransferase; Catalyzes the formation of deamido-NAD(+) from nicotinate ribonucleotide and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadD family. (177 aa) | ||||
nadE | NAD(+) synthase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source; Belongs to the NAD synthetase family. (276 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (342 aa) | ||||
ANP67577.1 | acyl-CoA thioesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (161 aa) | ||||
ANP67696.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (127 aa) | ||||
fliI-3 | Flagellar protein export ATPase FliI; Derived by automated computational analysis using gene prediction method: Protein Homology. (448 aa) | ||||
ANP67838.1 | Carboxylate--amine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (403 aa) | ||||
fosB | Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (161 aa) | ||||
coaA | Type I pantothenate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (307 aa) | ||||
nudC | NADH pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Nudix hydrolase family. NudC subfamily. (265 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (429 aa) | ||||
purH | Bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (530 aa) | ||||
ANP66858.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (166 aa) | ||||
nnrD | Bifunctional ADP-dependent (S)-NAD(P)H-hydrate dehydratase/NAD(P)H-hydrate epimerase; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-spec [...] (513 aa) | ||||
ANP64317.1 | Citrate (pro-3S)-lyase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (291 aa) | ||||
ANP64316.1 | Citrate lyase acyl carrier protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (98 aa) | ||||
nadA | Quinolinate synthase; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate; Belongs to the quinolinate synthase A family. Type 1 subfamily. (353 aa) | ||||
purR_1 | Transcriptional repressor PurR; Is the main repressor of the genes involved in the de novo synthesis of purine nucleotides, regulating purB, purC, purEK, purF, purHD, purL, purMN and guaBA expression. PurR is allosterically activated to bind its cognate DNA by binding the purine corepressors, hypoxanthine or guanine, thereby effecting transcription repression. (334 aa) | ||||
udp_1 | Uridine phosphorylase; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1-phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis. Belongs to the PNP/UDP phosphorylase family. (252 aa) | ||||
tesB | acyl-CoA thioesterase II; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa) | ||||
ANP64121.1 | 5'-deoxynucleotidase; Catalyzes the strictly specific dephosphorylation of 2'- deoxyribonucleoside 5'-monophosphates. (194 aa) | ||||
ANP64120.1 | dGTPase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the dGTPase family. Type 2 subfamily. (440 aa) | ||||
ANP64093.1 | AMP-fatty acid ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (466 aa) | ||||
folD | Bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (286 aa) | ||||
purU | Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (277 aa) | ||||
sucB | Dihydrolipoamide succinyltransferase; E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (402 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (214 aa) | ||||
ushA | Bifunctional UDP-sugar hydrolase/5'-nucleotidase; Catalyzes the degradation of periplasmic UDP-glucose to uridine, glucose-1-phosphate and inorganic phosphate; specific for uridine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (560 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (314 aa) | ||||
corC_1 | Magnesium/cobalt efflux protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (299 aa) | ||||
gpt | Xanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (154 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1297 aa) | ||||
ppnK | NAD(+) kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (294 aa) | ||||
guaA | Glutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (517 aa) | ||||
guaB_2 | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa) | ||||
ndk | Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (141 aa) | ||||
yjjX | Inosine/xanthosine triphosphatase; Phosphatase that hydrolyzes non-canonical purine nucleotides such as XTP and ITP to their respective diphosphate derivatives. Probably excludes non-canonical purines from DNA/RNA precursor pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. (177 aa) | ||||
ribF | Riboflavin biosynthesis protein RibF; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (311 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (283 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1077 aa) | ||||
carA | Carbamoyl phosphate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarA family. (379 aa) | ||||
pykF | Pyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (470 aa) | ||||
cpdB | 2',3'-cyclic-nucleotide 2'-phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (653 aa) | ||||
tpiA | Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (256 aa) | ||||
guaC | GMP reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. (347 aa) | ||||
ANP66842.1 | Cell division protein DedD; Derived by automated computational analysis using gene prediction method: Protein Homology. (154 aa) | ||||
ANP66770.1 | Adenosine deaminase; Catalyzes the hydrolytic deamination of adenine to hypoxanthine. Plays an important role in the purine salvage pathway and in nitrogen catabolism. (338 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (418 aa) | ||||
pncB | Nicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP; Belongs to the NAPRTase family. (436 aa) | ||||
ANP66673.1 | Glyoxalase; Derived by automated computational analysis using gene prediction method: Protein Homology. (118 aa) | ||||
coaD | Pantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (160 aa) | ||||
ANP66375.1 | Phosphopantothenoylcysteine decarboxylase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (399 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (207 aa) | ||||
spoT | Bifunctional GTP diphosphokinase/guanosine-3',5'-bis(diphosphate) 3'-diphosphatase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (706 aa) | ||||
cysQ | 3'(2'),5'-bisphosphate nucleotidase; Converts adenosine-3',5'-bisphosphate (PAP) to AMP. Belongs to the inositol monophosphatase superfamily. CysQ family. (275 aa) | ||||
add | Adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. Adenosine deaminase subfamily. (334 aa) | ||||
atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (270 aa) | ||||
atpE | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (84 aa) | ||||
atpF | F0F1 ATP synthase subunit B; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa) | ||||
atpH | ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (177 aa) | ||||
atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit; Belongs to the ATPase alpha/beta chains family. (513 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (288 aa) | ||||
atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (467 aa) | ||||
atpC | F0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa) | ||||
purK | 5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (377 aa) | ||||
purE | 5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (161 aa) | ||||
gppA | Guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase; Catalyzes the conversion of pppGpp to ppGpp. Guanosine pentaphosphate (pppGpp) is a cytoplasmic signaling molecule which together with ppGpp controls the 'stringent response', an adaptive process that allows bacteria to respond to amino acid starvation, resulting in the coordinated regulation of numerous cellular activities. (497 aa) | ||||
cyaA | Adenylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (842 aa) | ||||
accC | acetyl-CoA carboxylase biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (447 aa) | ||||
acsA | acetate--CoA ligase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family. (650 aa) | ||||
pfkA | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (320 aa) | ||||
gpmI | Phosphoglycerate mutase (2,3-diphosphoglycerate-independent); Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (510 aa) | ||||
purA_1 | Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (438 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (550 aa) | ||||
ANP65894.1 | Septum formation protein Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. (189 aa) | ||||
pyrI | Aspartate carbamoyltransferase regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase. (153 aa) | ||||
pyrB | Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (309 aa) | ||||
rdgB | Non-canonical purine NTP pyrophosphatase, RdgB/HAM1 family; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (200 aa) | ||||
ANP66512.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0301 (AlgH) family. (187 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (386 aa) | ||||
fbaA | Class II fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (358 aa) | ||||
ANP66510.1 | L-aspartate oxidase; Catalyzes the oxidation of L-aspartate to iminoaspartate. (537 aa) | ||||
relA | GTP diphosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (739 aa) | ||||
mazG | Nucleoside triphosphate pyrophosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa) | ||||
pyrG | CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (546 aa) | ||||
eno | Phosphopyruvate hydratase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (433 aa) | ||||
surE | 5'/3'-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (258 aa) | ||||
ANP65743.1 | Damage-inducible protein CinA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (160 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (204 aa) | ||||
nadC | Nicotinate-nucleotide diphosphorylase; Catalyzes the formation of pyridine-2,3-dicarboxylate and 5-phospho-alpha-D-ribose 1-diphosphate from nictinate D-ribonucleotide; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NadC/ModD family. (295 aa) | ||||
aceE | Pyruvate dehydrogenase (acetyl-transferring), homodimeric type; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa) | ||||
aceF | Pyruvate dehydrogenase complex dihydrolipoyllysine-residue acetyltransferase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (628 aa) | ||||
lpdA | Dihydrolipoyl dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa) | ||||
hpt | Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (176 aa) | ||||
deoC | Deoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 2 subfamily. (258 aa) | ||||
deoB | Phosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (406 aa) | ||||
pyrH | UMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (241 aa) | ||||
accA | acetyl-CoA carboxylase carboxyltransferase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (218 aa) | ||||
purM | Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (208 aa) | ||||
fliI-2 | Flagellar protein export ATPase FliI; Derived by automated computational analysis using gene prediction method: Protein Homology. (439 aa) | ||||
accD_1 | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (308 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (504 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (181 aa) | ||||
gapA | Type I glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (331 aa) | ||||
pta | Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (714 aa) | ||||
ackA_1 | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (398 aa) | ||||
udk | Uridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (213 aa) | ||||
ANP65205.1 | Septum formation protein Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes 7- methyl-GTP (m(7)GTP). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids; Belongs to the Maf family. YceF subfamily. (193 aa) | ||||
tmk | dTMP kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (210 aa) | ||||
pyk | Pyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (480 aa) | ||||
cmk | Cytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (226 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (233 aa) | ||||
ANP65128.1 | acyl-CoA thioesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (131 aa) | ||||
yfaY | Competence/damage-inducible protein A; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (410 aa) | ||||
ANP65094.1 | Ribonucleotide-diphosphate reductase subunit beta; B2 or R2 protein; type 1a enzyme; catalyzes the rate-limiting step in dNTP synthesis; converts nucleotides to deoxynucleotides; forms a homodimer and then a multimeric complex with NrdA; Derived by automated computational analysis using gene prediction method: Protein Homology. (377 aa) | ||||
ANP65093.1 | Ribonucleoside-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. (760 aa) | ||||
ANP65041.1 | Phosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (195 aa) | ||||
fliI | EscN/YscN/HrcN family type III secretion system ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (440 aa) | ||||
prpE | Catalyzes the formation of propionyl-CoA using propionate as a substrate; PrpE from Ralstonia solanacearum can produce acetyl-, propionyl-, butyryl- and acrylyl-coenzyme A, and Salmonella enterica produces propionyl- and butyryl-coenzyme A; not expressed in Escherichia coli when grown on propionate/minimal media; ATP-dependent; Derived by automated computational analysis using gene prediction method: Protein Homology. (625 aa) | ||||
pyrD | Dihydroorotate dehydrogenase (quinone); Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa) | ||||
ANP64690.1 | Hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (421 aa) | ||||
ANP64606.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (160 aa) | ||||
ANP64604.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (283 aa) |