STRINGSTRING
cpdB cpdB cysD cysD cysN cysN cysC cysC apaH apaH pykF pykF nudF nudF cpdA cpdA yjjX yjjX ANP63797.1 ANP63797.1 ndk ndk guaB_2 guaB_2 guaA guaA purL purL gpt gpt ygdH ygdH prs prs ushA ushA adk adk ANP64042.1 ANP64042.1 ANP64120.1 ANP64120.1 purB purB gsk_1 gsk_1 ushA-2 ushA-2 purC purC purT purT ANP65093.1 ANP65093.1 ANP65094.1 ANP65094.1 pyk pyk apt apt purF purF purM purM purN purN deoD deoD deoB deoB hpt hpt surE surE mazG mazG relA relA rdgB rdgB purA_1 purA_1 cyaA cyaA gppA gppA purE purE purK purK ANP66270.1 ANP66270.1 add add nudE nudE spoT spoT gmk gmk yjjG yjjG ANP66598.1 ANP66598.1 purA purA ANP66770.1 ANP66770.1 guaC guaC gsk_2 gsk_2 ANP67127.1 ANP67127.1 ANP67209.1 ANP67209.1 ANP67262.1 ANP67262.1 deoD-2 deoD-2 ppnP ppnP purD purD purH purH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
cpdB2',3'-cyclic-nucleotide 2'-phosphodiesterase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (653 aa)
cysDSulfate adenylyltransferase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (302 aa)
cysNSulfate adenylyltransferase subunit CysN; May be the GTPase, regulating ATP sulfurylase activity. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. CysN/NodQ subfamily. (476 aa)
cysCAdenylyl-sulfate kinase; Catalyzes the synthesis of activated sulfate. (205 aa)
apaHBis(5'-nucleosyl)-tetraphosphatase (symmetrical); Hydrolyzes diadenosine 5',5'''-P1,P4-tetraphosphate to yield ADP; Belongs to the Ap4A hydrolase family. (268 aa)
pykFPyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (470 aa)
nudFADP-ribose diphosphatase; ADP-sugar pyrophosphatase; catalyzes the formation of D-ribose 5-phosphate from ADP-ribose; can also act on ADP-mannose and ADP-glucose; Derived by automated computational analysis using gene prediction method: Protein Homology. (216 aa)
cpdA3',5'-cyclic-AMP phosphodiesterase; Hydrolyzes cAMP to 5'-AMP. Plays an important regulatory role in modulating the intracellular concentration of cAMP, thereby influencing cAMP-dependent processes. (268 aa)
yjjXInosine/xanthosine triphosphatase; Phosphatase that hydrolyzes non-canonical purine nucleotides such as XTP and ITP to their respective diphosphate derivatives. Probably excludes non-canonical purines from DNA/RNA precursor pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. (177 aa)
ANP63797.1Exopolyphosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GppA/Ppx family. (501 aa)
ndkNucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (141 aa)
guaB_2IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa)
guaAGlutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (517 aa)
purLPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1297 aa)
gptXanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (154 aa)
ygdHLOG family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (458 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (314 aa)
ushABifunctional UDP-sugar hydrolase/5'-nucleotidase; Catalyzes the degradation of periplasmic UDP-glucose to uridine, glucose-1-phosphate and inorganic phosphate; specific for uridine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (560 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (214 aa)
ANP64042.1Phosphoglucomutase, alpha-D-glucose phosphate-specific; Catalyzes the interconversion of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa)
ANP64120.1dGTPase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the dGTPase family. Type 2 subfamily. (440 aa)
purBAdenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa)
gsk_1Catalyzes the formation of inosine/guanosine monophosphate from inosine or guanosine and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa)
ushA-2Bifunctional UDP-sugar hydrolase/5'-nucleotidase; Catalyzes the degradation of periplasmic UDP-glucose to uridine, glucose-1-phosphate and inorganic phosphate; specific for uridine nucleotides; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (562 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (367 aa)
purTPhosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (391 aa)
ANP65093.1Ribonucleoside-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. (760 aa)
ANP65094.1Ribonucleotide-diphosphate reductase subunit beta; B2 or R2 protein; type 1a enzyme; catalyzes the rate-limiting step in dNTP synthesis; converts nucleotides to deoxynucleotides; forms a homodimer and then a multimeric complex with NrdA; Derived by automated computational analysis using gene prediction method: Protein Homology. (377 aa)
pykPyruvate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the pyruvate kinase family. (480 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (181 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (504 aa)
purMPhosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (346 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (218 aa)
deoDPurine-nucleoside phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (239 aa)
deoBPhosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (406 aa)
hptHypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (176 aa)
surE5'/3'-nucleotidase SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (258 aa)
mazGNucleoside triphosphate pyrophosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (267 aa)
relAGTP diphosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (739 aa)
rdgBNon-canonical purine NTP pyrophosphatase, RdgB/HAM1 family; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (200 aa)
purA_1Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (438 aa)
cyaAAdenylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (842 aa)
gppAGuanosine-5'-triphosphate,3'-diphosphate pyrophosphatase; Catalyzes the conversion of pppGpp to ppGpp. Guanosine pentaphosphate (pppGpp) is a cytoplasmic signaling molecule which together with ppGpp controls the 'stringent response', an adaptive process that allows bacteria to respond to amino acid starvation, resulting in the coordinated regulation of numerous cellular activities. (497 aa)
purE5-(carboxyamino)imidazole ribonucleotide mutase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (161 aa)
purK5-(carboxyamino)imidazole ribonucleotide synthase; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (377 aa)
ANP66270.1Purine-nucleoside phosphorylase; The purine nucleoside phosphorylases catalyze the phosphorolytic breakdown of the N-glycosidic bond in the beta- (deoxy)ribonucleoside molecules, with the formation of the corresponding free purine bases and pentose-1-phosphate. (274 aa)
addAdenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. Adenosine deaminase subfamily. (334 aa)
nudEADP compounds hydrolase NudE; Derived by automated computational analysis using gene prediction method: Protein Homology. (189 aa)
spoTBifunctional GTP diphosphokinase/guanosine-3',5'-bis(diphosphate) 3'-diphosphatase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (706 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (207 aa)
yjjGNoncanonical pyrimidine nucleotidase, YjjG family; Derived by automated computational analysis using gene prediction method: Protein Homology. (224 aa)
ANP66598.1ADP-ribose pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (179 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (418 aa)
ANP66770.1Adenosine deaminase; Catalyzes the hydrolytic deamination of adenine to hypoxanthine. Plays an important role in the purine salvage pathway and in nitrogen catabolism. (338 aa)
guaCGMP reductase; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. (347 aa)
gsk_2Catalyzes the formation of inosine/guanosine monophosphate from inosine or guanosine and ATP; Derived by automated computational analysis using gene prediction method: Protein Homology. (434 aa)
ANP67127.1Bifunctional metallophosphatase/5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the 5'-nucleotidase family. (580 aa)
ANP67209.1Anaerobic ribonucleoside-triphosphate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (706 aa)
ANP67262.1ADP-ribose pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (171 aa)
deoD-2Purine-nucleoside phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (236 aa)
ppnPHypothetical protein; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions. (94 aa)
purDPhosphoribosylamine--glycine ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (429 aa)
purHBifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (530 aa)
Your Current Organism:
Vibrio alginolyticus
NCBI taxonomy Id: 663
Other names: ATCC 17749, Beneckea alginolytica, CAIM 516, CCUG 13445, CCUG 16315, CCUG 4989, CIP 103336, CIP 75.3, DSM 2171, IFO 15630, LMG 4409, LMG:4409, NBRC 15630, NCCB 71013, NCCB 77003, NCTC 12160, Oceanomonas alginolytica, Pseudomonas creosotensis, V. alginolyticus, Vibrio sp. PeIg0901
Server load: low (16%) [HD]