STRINGSTRING
KOH17769.1 KOH17769.1 fabG-3 fabG-3 fabD fabD KOH18144.1 KOH18144.1 KOH18258.1 KOH18258.1 fabZ fabZ KOH17462.1 KOH17462.1 KOH22760.1 KOH22760.1 fabV fabV KOH20936.1 KOH20936.1 KOH21077.1 KOH21077.1 KOH21346.1 KOH21346.1 KOH21352.1 KOH21352.1 KOH21355.1 KOH21355.1 KOH18141.1 KOH18141.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KOH17769.1Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to 2,3-decenoyl-ACP or 3,4-decenoyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology. (172 aa)
fabG-33-ketoacyl-ACP reductase; Catalyzes the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (244 aa)
fabDMalonyl CoA-ACP transacylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (307 aa)
KOH18144.13-oxoacyl-ACP synthase; FabH; beta-ketoacyl-acyl carrier protein synthase III; catalyzes the condensation of acetyl-CoA with malonyl-ACP to initiate cycles of fatty acid elongation; differs from 3-oxoacyl-(acyl carrier protein) synthase I and II in that it utilizes CoA thioesters as primers rather than acyl-ACPs; Derived by automated computational analysis using gene prediction method: Protein Homology. (316 aa)
KOH18258.1FabB, beta-Ketoacyl-ACP synthase I, KASI; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (403 aa)
fabZ3-hydroxyacyl-ACP dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (150 aa)
KOH17462.13-oxoacyl-ACP synthase; FabH; beta-ketoacyl-acyl carrier protein synthase III; catalyzes the condensation of acetyl-CoA with malonyl-ACP to initiate cycles of fatty acid elongation; differs from 3-oxoacyl-(acyl carrier protein) synthase I and II in that it utilizes CoA thioesters as primers rather than acyl-ACPs; in Pseudomonas this protein is involved in quinolone signal biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. FabH family. (364 aa)
KOH22760.1Oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (253 aa)
fabVtrans-2-enoyl-CoA reductase; Involved in the final reduction of the elongation cycle of fatty acid synthesis (FAS II). Catalyzes the reduction of a carbon- carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP); Belongs to the TER reductase family. (399 aa)
KOH20936.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (314 aa)
KOH21077.1trans-2-enoyl-CoA reductase; Enzyme from Treponema denticola exhibits NADH-dependent trans-2-enoyl-CoA reductase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (400 aa)
KOH21346.13-hydroxyacyl-ACP dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (122 aa)
KOH21352.13-oxoacyl-ACP synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (395 aa)
KOH21355.1FabB; beta-ketoacyl-ACP synthase I, KASI; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (407 aa)
KOH18141.1FabF; beta-ketoacyl-ACP synthase II, KASII; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (416 aa)
Your Current Organism:
Vibrio parahaemolyticus
NCBI taxonomy Id: 670
Other names: ATCC 17802, Beneckea parahaemolytica, CAIM 320, CCUG 14474, CCUG 15657, CCUG 4224, CIP 75.2, DSM 10027, IFO 12711, LMG 2850, LMG:2850, NBRC 12711, NCCB 77010, NCCB 77018, NCTC 10903, NRRL B-4167, Oceanomonas parahaemolytica, Pasteurella parahaemolytica, V. parahaemolyticus
Server load: low (22%) [HD]