STRINGSTRING
fadB fadB fadA fadA KOH22252.1 KOH22252.1 fabG fabG KOH22326.1 KOH22326.1 accD accD fabV fabV accB accB accC accC KOH21077.1 KOH21077.1 KOH21078.1 KOH21078.1 KOH21352.1 KOH21352.1 fabG-2 fabG-2 KOH21355.1 KOH21355.1 KOH21366.1 KOH21366.1 KOH19526.1 KOH19526.1 KOH17769.1 KOH17769.1 KOH18068.1 KOH18068.1 KOH18141.1 KOH18141.1 fabG-3 fabG-3 fabD fabD KOH18144.1 KOH18144.1 accD-2 accD-2 KOH18258.1 KOH18258.1 fadJ fadJ FadI FadI fadE fadE KOH18353.1 KOH18353.1 fabZ fabZ KOH17192.1 KOH17192.1 KOH17526.1 KOH17526.1 KOH17321.1 KOH17321.1 KOH17343.1 KOH17343.1 fabG-4 fabG-4 KOH17462.1 KOH17462.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
fadBMultifunctional fatty acid oxidation complex subunit alpha; Involved in the aerobic and anaerobic degradation of long- chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate. In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family. (723 aa)
fadA3-ketoacyl-CoA thiolase; FadA; fatty acid oxidation complex component beta; functions in a heterotetramer with FadB; similar to FadI2J2 complex; functions in beta-oxidation of fatty acids; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (391 aa)
KOH22252.1acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (408 aa)
fabG3-ketoacyl-ACP reductase; Catalyzes the first of the two reduction steps in the elongation cycle of fatty acid synthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (252 aa)
KOH22326.1acyl-CoA desaturase; Derived by automated computational analysis using gene prediction method: Protein Homology. (374 aa)
accDacetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (289 aa)
fabVtrans-2-enoyl-CoA reductase; Involved in the final reduction of the elongation cycle of fatty acid synthesis (FAS II). Catalyzes the reduction of a carbon- carbon double bond in an enoyl moiety that is covalently linked to an acyl carrier protein (ACP); Belongs to the TER reductase family. (399 aa)
accBacetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (152 aa)
accCacetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (447 aa)
KOH21077.1trans-2-enoyl-CoA reductase; Enzyme from Treponema denticola exhibits NADH-dependent trans-2-enoyl-CoA reductase activity; Derived by automated computational analysis using gene prediction method: Protein Homology. (400 aa)
KOH21078.1acyl-CoA dehydrogenase; Functions in fatty acid oxidation; converts acyl-CoA and FAD to FADH2 and delta2-enoyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (760 aa)
KOH21352.13-oxoacyl-ACP synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (395 aa)
fabG-23-ketoacyl-ACP reductase; Catalyzes the first of the two reduction steps in the elongation cycle of fatty acid synthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (241 aa)
KOH21355.1FabB; beta-ketoacyl-ACP synthase I, KASI; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (407 aa)
KOH21366.1Long-chain fatty acid--CoA ligase; Activates fatty acids by binding to coenzyme A; Derived by automated computational analysis using gene prediction method: Protein Homology. (563 aa)
KOH19526.1Long-chain fatty acid--CoA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (602 aa)
KOH17769.1Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to 2,3-decenoyl-ACP or 3,4-decenoyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology. (172 aa)
KOH18068.1acyl-CoA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (513 aa)
KOH18141.1FabF; beta-ketoacyl-ACP synthase II, KASII; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (416 aa)
fabG-33-ketoacyl-ACP reductase; Catalyzes the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (244 aa)
fabDMalonyl CoA-ACP transacylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (307 aa)
KOH18144.13-oxoacyl-ACP synthase; FabH; beta-ketoacyl-acyl carrier protein synthase III; catalyzes the condensation of acetyl-CoA with malonyl-ACP to initiate cycles of fatty acid elongation; differs from 3-oxoacyl-(acyl carrier protein) synthase I and II in that it utilizes CoA thioesters as primers rather than acyl-ACPs; Derived by automated computational analysis using gene prediction method: Protein Homology. (316 aa)
accD-2acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (308 aa)
KOH18258.1FabB, beta-Ketoacyl-ACP synthase I, KASI; catalyzes a condensation reaction in fatty acid biosynthesis: addition of an acyl acceptor of two carbons from malonyl-ACP; required for the elongation of short-chain unsaturated acyl-ACP; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (403 aa)
fadJMultifunctional fatty acid oxidation complex subunit alpha; Multifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/3-hydroxybutyryl-CoA epimerase; catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA; exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities: forms a heterotetramer with FadI; similar to FadA2B2 complex; involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate; Derived by automated computational analysis using gene prediction method: Protein Homology. (703 aa)
FadI3-ketoacyl-CoA thiolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (435 aa)
fadEacyl-CoA dehydrogenase; Functions in fatty acid oxidation; converts acyl-CoA and FAD to FADH2 and delta2-enoyl-CoA; Derived by automated computational analysis using gene prediction method: Protein Homology. (814 aa)
KOH18353.1acetyl-CoA carboxylase subunit alpha; Catalyzes the carboxylation of acetyl-CoA to malonyl-CoA; forms a tetramer composed of two alpha (AccA) and two beta (AccD) subunits; one of the two catalytic subunits that can form the acetyl CoA carboxylase enzyme together with a carrier protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (319 aa)
fabZ3-hydroxyacyl-ACP dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (150 aa)
KOH17192.1Short-chain dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (239 aa)
KOH17526.1acetyl-CoA acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (402 aa)
KOH17321.1AMP-dependent synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (650 aa)
KOH17343.1acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family. (392 aa)
fabG-43-ketoacyl-ACP reductase; Catalyzes the first of the two reduction steps in the elongation cycle of fatty acid synthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (252 aa)
KOH17462.13-oxoacyl-ACP synthase; FabH; beta-ketoacyl-acyl carrier protein synthase III; catalyzes the condensation of acetyl-CoA with malonyl-ACP to initiate cycles of fatty acid elongation; differs from 3-oxoacyl-(acyl carrier protein) synthase I and II in that it utilizes CoA thioesters as primers rather than acyl-ACPs; in Pseudomonas this protein is involved in quinolone signal biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. FabH family. (364 aa)
Your Current Organism:
Vibrio parahaemolyticus
NCBI taxonomy Id: 670
Other names: ATCC 17802, Beneckea parahaemolytica, CAIM 320, CCUG 14474, CCUG 15657, CCUG 4224, CIP 75.2, DSM 10027, IFO 12711, LMG 2850, LMG:2850, NBRC 12711, NCCB 77010, NCCB 77018, NCTC 10903, NRRL B-4167, Oceanomonas parahaemolytica, Pasteurella parahaemolytica, V. parahaemolyticus
Server load: medium (48%) [HD]