STRINGSTRING
AME03725.1 AME03725.1 mdh mdh aroE aroE mtlD mtlD AME02851.1 AME02851.1 AME04703.1 AME04703.1 AME03122.1 AME03122.1 AME03157.1 AME03157.1 leuB leuB ilvC ilvC AME03451.1 AME03451.1 AME03574.1 AME03574.1 AME03580.1 AME03580.1 AME03815.1 AME03815.1 AME04755.1 AME04755.1 AME03845.1 AME03845.1 AME04758.1 AME04758.1 AME04212.1 AME04212.1 AME04217.1 AME04217.1 AME04419.1 AME04419.1 AME04421.1 AME04421.1 hisD hisD AME04596.1 AME04596.1 murB murB AME04643.1 AME04643.1 AME04669.1 AME04669.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AME03725.1Hydroxyacid dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (320 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 3 family. (316 aa)
aroEIron transporter; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (288 aa)
mtlDMannitol-1-phosphate 5-dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa)
AME02851.1CtsR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (150 aa)
AME04703.1Phosphogluconate dehydrogenase (NADP(+)-dependent, decarboxylating); Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (471 aa)
AME03122.1D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (526 aa)
AME03157.1Diaminohydroxyphosphoribosylaminopyrimidine deaminase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (367 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (357 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (337 aa)
AME03451.1L-lactate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the LDH/MDH superfamily. (319 aa)
AME03574.1Butanol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (394 aa)
AME03580.1Malate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (414 aa)
AME03815.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (449 aa)
AME04755.1Phosphogluconate dehydrogenase (NADP(+)-dependent, decarboxylating); Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (470 aa)
AME03845.13-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (354 aa)
AME04758.1NAD(P)-dependent oxidoreductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. (295 aa)
AME04212.1Gluconate 2-dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (343 aa)
AME04217.13-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (346 aa)
AME04419.1Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (326 aa)
AME04421.1Inosine-5-monophosphate dehydrogenase; Catalyzes the synthesis of xanthosine monophosphate by the NAD+ dependent oxidation of inosine monophosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (501 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (448 aa)
AME04596.1Phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (317 aa)
murBUDP-N-acetylenolpyruvoylglucosamine reductase; Cell wall formation. (303 aa)
AME04643.1Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa)
AME04669.1Tartrate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (354 aa)
Your Current Organism:
Selenomonas
NCBI taxonomy Id: 713030
Other names: S. sp. oral taxon 136, Selenomonas sp. oral taxon 136
Server load: low (22%) [HD]