Your Input: | |||||
surE | Acid phosphatase; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (253 aa) | ||||
AME02643.1 | Histidine triad nucleotide-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (115 aa) | ||||
pyrD | Dihydroorotate dehydrogenase; Catalyzes the conversion of dihydroorotate to orotate. (310 aa) | ||||
pyrK | Dihydroorotate dehydrogenase; Responsible for channeling the electrons from the oxidation of dihydroorotate from the FMN redox center in the PyrD type B subunit to the ultimate electron acceptor NAD(+). (261 aa) | ||||
carB | Carbamoyl phosphate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CarB family. (1075 aa) | ||||
carA | Carbamoyl-phosphate synthase small subunit; Catalyzes production of carbamoyl phosphate from bicarbonate and glutamine in pyrimidine and arginine biosynthesis pathways; forms an octamer composed of four CarAB dimers; Derived by automated computational analysis using gene prediction method: Protein Homology. (357 aa) | ||||
pyrC | Dihydroorotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate; Belongs to the metallo-dependent hydrolases superfamily. DHOase family. Class I DHOase subfamily. (430 aa) | ||||
pyrB | Aspartate carbamoyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. ATCase family. (315 aa) | ||||
AME02729.1 | Nicotinate phosphoribosyltransferase; Catalyzes the first step in the biosynthesis of NAD from nicotinic acid, the ATP-dependent synthesis of beta-nicotinate D- ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate. Belongs to the NAPRTase family. (485 aa) | ||||
queF | 7-cyano-7-deazaguanine reductase; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1). Belongs to the GTP cyclohydrolase I family. QueF type 1 subfamily. (163 aa) | ||||
AME02822.1 | dTDP-glucose 4,6-dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD(P)-dependent epimerase/dehydratase family. dTDP-glucose dehydratase subfamily. (335 aa) | ||||
queC | 7-cyano-7-deazaguanine synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). (228 aa) | ||||
queE | Radical SAM protein; Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7- deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds. (243 aa) | ||||
AME02871.1 | 6-pyruvoyl tetrahydropterin synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (126 aa) | ||||
coaX | Type III pantothenate kinase; Catalyzes the phosphorylation of pantothenate (Pan), the first step in CoA biosynthesis. (255 aa) | ||||
AME02897.1 | Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (181 aa) | ||||
AME02904.1 | Tetrapyrrole methylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (231 aa) | ||||
pyrG | CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (535 aa) | ||||
upp | Uracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (218 aa) | ||||
pfp | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions. (420 aa) | ||||
AME03011.1 | Deoxyuridine 5'-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism: it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA. (150 aa) | ||||
AME03106.1 | NAD(+) synthase (glutamine-hydrolyzing); Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD synthetase family. (555 aa) | ||||
AME03111.1 | Phosphoribosylformylglycinamidine synthase; Catalyzes the formation of 2-(formamido)-N1-(5-phospho-D-ribosyl)acetamidine from N2-formyl-N1-(5-phospho-D-ribosyl)glycinamide and L-glutamine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (1262 aa) | ||||
AME03119.1 | Cytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (201 aa) | ||||
deoD | Purine-nucleoside phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (235 aa) | ||||
AME03165.1 | Phosphopantothenoylcysteine decarboxylase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (398 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (197 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (200 aa) | ||||
ndk | Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (137 aa) | ||||
kdsB | 3-deoxy-manno-octulosonate cytidylyltransferase; Activates KDO (a required 8-carbon sugar) for incorporation into bacterial lipopolysaccharide in Gram-negative bacteria. (244 aa) | ||||
AME03238.1 | Hexokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa) | ||||
murA | UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (426 aa) | ||||
pfkA | ATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (321 aa) | ||||
AME03357.1 | Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (471 aa) | ||||
AME03361.1 | Phosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (192 aa) | ||||
AME03401.1 | Deoxyguanosinetriphosphate triphosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the dGTPase family. Type 2 subfamily. (335 aa) | ||||
AME03404.1 | Nucleotide-binding protein; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. (193 aa) | ||||
AME03422.1 | Damage-inducible protein CinA; Derived by automated computational analysis using gene prediction method: Protein Homology. (262 aa) | ||||
AME03452.1 | Phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (282 aa) | ||||
atpC | ATP synthase F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (144 aa) | ||||
atpD | ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (470 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (282 aa) | ||||
atpA | ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (505 aa) | ||||
atpH | ATP synthase F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (179 aa) | ||||
atpF | ATP synthase F0 subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (174 aa) | ||||
atpE | ATP synthase F0 subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (83 aa) | ||||
atpB | ATP synthase F0 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (226 aa) | ||||
AME04732.1 | Fructose transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (240 aa) | ||||
pfkA-2 | ATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (320 aa) | ||||
AME03577.1 | Cytidine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (158 aa) | ||||
AXE86_05550 | Mutarotase; Internal stop; incomplete; partial on complete genome; missing start; Derived by automated computational analysis using gene prediction method: Protein Homology. (541 aa) | ||||
ade | Adenosine deaminase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the metallo-dependent hydrolases superfamily. Adenine deaminase family. (577 aa) | ||||
AXE86_06235 | Hypothetical protein; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology. (172 aa) | ||||
AME03701.1 | 5-aminoimidazole-4-carboxamide ribonucleotide transformylase; Catalyzes the formylation of AICAR with 10-formyl-tetrahydrofolate to yield FAICAR and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. (390 aa) | ||||
deoC | 2-deoxyribose-5-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 1 subfamily. (216 aa) | ||||
AME03765.1 | Class I fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (295 aa) | ||||
AME03790.1 | Class I fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (295 aa) | ||||
AME04753.1 | acyl-CoA thioesterase; Derived by automated computational analysis using gene prediction method: Protein Homology. (185 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (428 aa) | ||||
AME03826.1 | Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (430 aa) | ||||
AME03915.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (122 aa) | ||||
AME03923.1 | methylmalonyl-CoA mutase; MDM; functions in conversion of succinate to propionate; Derived by automated computational analysis using gene prediction method: Protein Homology. (732 aa) | ||||
AME04758.1 | NAD(P)-dependent oxidoreductase; Catalyzes the reduction of dTDP-6-deoxy-L-lyxo-4-hexulose to yield dTDP-L-rhamnose. (295 aa) | ||||
AME03945.1 | Ribonucleoside-triphosphate reductase activating protein; Activation of anaerobic ribonucleoside-triphosphate reductase under anaerobic conditions by generation of an organic free radical, using S-adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine. (175 aa) | ||||
AME03950.1 | Cytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis; Belongs to the cytidine and deoxycytidylate deaminase family. (140 aa) | ||||
folD | Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (284 aa) | ||||
AME03978.1 | methylmalonyl-CoA mutase; Derived by automated computational analysis using gene prediction method: Protein Homology. (548 aa) | ||||
AME03981.1 | methylmalonyl-CoA epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (138 aa) | ||||
nnrE | Bifunctional ADP-dependent (S)-NAD(P)H-hydrate dehydratase/NAD(P)H-hydrate epimerase; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-spec [...] (517 aa) | ||||
dacA | Hypothetical protein; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria. (280 aa) | ||||
AME04103.1 | Flagellar protein export ATPase FliI; Derived by automated computational analysis using gene prediction method: Protein Homology. (458 aa) | ||||
AME04167.1 | Thymidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (231 aa) | ||||
gmd | GDP-mannose 4,6 dehydratase; Catalyzes the conversion of GDP-D-mannose to GDP-4-dehydro-6- deoxy-D-mannose. (342 aa) | ||||
pgk | Phosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (405 aa) | ||||
tpiA | Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (249 aa) | ||||
gpmI | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (518 aa) | ||||
AME04207.1 | Hexokinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa) | ||||
AME04216.1 | Fructose-bisphosphate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (294 aa) | ||||
deoD-2 | Purine-nucleoside phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (236 aa) | ||||
deoB | Phosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (394 aa) | ||||
AME04227.1 | Pyrimidine-nucleoside phosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (440 aa) | ||||
AME04234.1 | Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (484 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (434 aa) | ||||
AME04285.1 | Non-canonical purine NTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (208 aa) | ||||
AME04302.1 | dTDP-4-dehydrorhamnose 3,5-epimerase; Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Belongs to the dTDP-4-dehydrorhamnose 3,5-epimerase family. (186 aa) | ||||
coaD | Phosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (163 aa) | ||||
nadD | Nicotinic acid mononucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (206 aa) | ||||
AME04784.1 | Phosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa) | ||||
purE | Phosphoribosylaminoimidazole carboxylase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (162 aa) | ||||
purC | Phosphoribosylaminoimidazolesuccinocarboxamide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SAICAR synthetase family. (237 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine. (483 aa) | ||||
purM | Phosphoribosylaminoimidazole synthetase; Catalyzes the formation of 1-(5-phosphoribosyl)-5-aminoimidazole from 2-(formamido)-N1-(5-phosphoribosyl)acetamidine and ATP in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (349 aa) | ||||
purN | Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (210 aa) | ||||
AME04405.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (197 aa) | ||||
purD | Phosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (419 aa) | ||||
guaA | GMP synthetase; Catalyzes the synthesis of GMP from XMP. (518 aa) | ||||
AME04421.1 | Inosine-5-monophosphate dehydrogenase; Catalyzes the synthesis of xanthosine monophosphate by the NAD+ dependent oxidation of inosine monophosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (501 aa) | ||||
nadK | NAD(+) kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (284 aa) | ||||
pyrF | Orotidine 5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (237 aa) | ||||
pyrE | Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (191 aa) | ||||
glmU | Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (454 aa) | ||||
prs | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (317 aa) | ||||
AME04474.1 | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor, and NADPH and FADH(2) as the reductant. (212 aa) | ||||
tgt | Queuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form t [...] (374 aa) | ||||
AME04485.1 | (p)ppGpp synthetase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (739 aa) | ||||
cmk | Cytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (217 aa) | ||||
AME04607.1 | Bifunctional riboflavin kinase/FMN adenylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribF family. (319 aa) | ||||
queA | S-adenosylmethionine:tRNA ribosyltransferase-isomerase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (343 aa) | ||||
queH | Hypothetical protein; Catalyzes the conversion of epoxyqueuosine (oQ) to queuosine (Q), which is a hypermodified base found in the wobble positions of tRNA(Asp), tRNA(Asn), tRNA(His) and tRNA(Tyr). (200 aa) | ||||
AME04629.1 | Fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and glyceraldehyde 3-phosphate from fructose 1,6, bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (332 aa) | ||||
pyrH | UMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (241 aa) | ||||
AME04668.1 | UTP--glucose-1-phosphate uridylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (291 aa) | ||||
AME04672.1 | Competence protein ComA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (163 aa) |