STRINGSTRING
aroE aroE AME02776.1 AME02776.1 AME02778.1 AME02778.1 AME02780.1 AME02780.1 AME02781.1 AME02781.1 AME04689.1 AME04689.1 trpA trpA trpB trpB AME02828.1 AME02828.1 trpF trpF AME02856.1 AME02856.1 AME02891.1 AME02891.1 leuA leuA dapA dapA glyA glyA AME02980.1 AME02980.1 pfp pfp proC proC AME03079.1 AME03079.1 AME04705.1 AME04705.1 AME03080.1 AME03080.1 asd asd dapB dapB AME03104.1 AME03104.1 AME03122.1 AME03122.1 metK metK dapF dapF leuB leuB leuD leuD leuC leuC ilvC ilvC AME03206.1 AME03206.1 AME03209.1 AME03209.1 metAA metAA AME03226.1 AME03226.1 AME03267.1 AME03267.1 AME03268.1 AME03268.1 AME03269.1 AME03269.1 pfkA pfkA AME03357.1 AME03357.1 AME03359.1 AME03359.1 pheA pheA serC serC pfkA-2 pfkA-2 AME03713.1 AME03713.1 AME03717.1 AME03717.1 AME03765.1 AME03765.1 AME03785.1 AME03785.1 AME03787.1 AME03787.1 AME03790.1 AME03790.1 AME03845.1 AME03845.1 AME03852.1 AME03852.1 AME03909.1 AME03909.1 AME03964.1 AME03964.1 AME04054.1 AME04054.1 AME04767.1 AME04767.1 AME04116.1 AME04116.1 AME04132.1 AME04132.1 AXE86_08635 AXE86_08635 aroC aroC aroK aroK aroB aroB AME04172.1 AME04172.1 AME04771.1 AME04771.1 AME04772.1 AME04772.1 AME04199.1 AME04199.1 pgk pgk tpiA tpiA gpmI gpmI AME04212.1 AME04212.1 AME04217.1 AME04217.1 eno eno trpD trpD AME04296.1 AME04296.1 AME04297.1 AME04297.1 AME04369.1 AME04369.1 AME04370.1 AME04370.1 AME04371.1 AME04371.1 proB proB proA proA AME04416.1 AME04416.1 aroQ aroQ prs prs AME04472.1 AME04472.1 AME04490.1 AME04490.1 AME04491.1 AME04491.1 aroA aroA hisI hisI hisF hisF hisA hisA hisH hisH hisB hisB hisC hisC hisD hisD hisG hisG hisZ hisZ ilvD ilvD AME04629.1 AME04629.1 AME04632.1 AME04632.1 AME04633.1 AME04633.1 argH argH AXE86_11475 AXE86_11475 argD argD argB argB argJ argJ argC argC thrB thrB AME04643.1 AME04643.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
aroEIron transporter; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (288 aa)
AME02776.1Saccharopine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (399 aa)
AME02778.1Pyridine nucleotide-disulfide oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology. (409 aa)
AME02780.1Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (499 aa)
AME02781.1Anthranilate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa)
AME04689.1Glutamine synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glutamine synthetase family. (629 aa)
trpATryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family. (261 aa)
trpBTryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine. (395 aa)
AME02828.1Indole-3-glycerol phosphate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (261 aa)
trpFPhosphoribosylanthranilate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TrpF family. (203 aa)
AME02856.1Ribulose phosphate epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (236 aa)
AME02891.1Aspartate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (398 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily. (555 aa)
dapA4-hydroxy-tetrahydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (295 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (420 aa)
AME02980.1Ribose-5-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (150 aa)
pfp6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions. (420 aa)
proCPyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (269 aa)
AME03079.1Chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate. Probably involved in the aromatic amino acid biosynthesis. (119 aa)
AME04705.1Ribulose phosphate epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (212 aa)
AME03080.1Ribose-5-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (154 aa)
asdAspartate-semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family. (343 aa)
dapB4-hydroxy-tetrahydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (262 aa)
AME03104.1Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (494 aa)
AME03122.1D-3-phosphoglycerate dehydrogenase; Catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-D-glycerate in serine biosynthesis; can also reduce alpha ketoglutarate to form 2-hydroxyglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (526 aa)
metKS-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (394 aa)
dapFDiaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (279 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (357 aa)
leuD3-isopropylmalate dehydratase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 2 subfamily. (167 aa)
leuC3-isopropylmalate dehydratase large subunit; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (420 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (337 aa)
AME03206.1Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (176 aa)
AME03209.1Diaminopimelate dehydrogenase; Catalyzes the reversible NADPH-dependent reductive amination of L-2-amino-6-oxopimelate, the acyclic form of L- tetrahydrodipicolinate, to generate the meso compound, D,L-2,6- diaminopimelate. (326 aa)
metAAHomoserine O-succinyltransferase; Transfers an acetyl group from acetyl-CoA to L-homoserine, forming acetyl-L-homoserine; Belongs to the MetA family. (308 aa)
AME03226.1Histidinol-phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PHP hydrolase family. HisK subfamily. (283 aa)
AME03267.1Cystathionine gamma-synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (383 aa)
AME03268.1Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (389 aa)
AME03269.1Cysteine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the cysteine synthase/cystathionine beta- synthase family. (311 aa)
pfkAATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (321 aa)
AME03357.1Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology. (471 aa)
AME03359.13-deoxy-7-phosphoheptulonate synthase; Catalyzes the formation of 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate from phosphoenolpyruvate and D-erythrose 4-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (344 aa)
pheAPrephenate dehydratase; Derived by automated computational analysis using gene prediction method: Protein Homology. (282 aa)
serC3-phosphoserine/phosphohydroxythreonine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. (361 aa)
pfkA-2ATP-dependent 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (320 aa)
AME03713.1Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (333 aa)
AME03717.1Serine hydroxymethyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (411 aa)
AME03765.1Class I fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (295 aa)
AME03785.1Acetylornithine deacetylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (420 aa)
AME03787.1Peptidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (381 aa)
AME03790.1Class I fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and D-glyceraldehyde 3-phosphate from D-fructose 1,6-bisphosphate in glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology. (295 aa)
AME03845.13-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (354 aa)
AME03852.1Acetolactate synthase large subunit; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the TPP enzyme family. (619 aa)
AME03909.1Diaminopimelate decarboxylase; Derived by automated computational analysis using gene prediction method: Protein Homology. (419 aa)
AME03964.1LL-diaminopimelate aminotransferase; Involved in the synthesis of meso-diaminopimelate (m-DAP or DL-DAP), required for both lysine and peptidoglycan biosynthesis. Catalyzes the direct conversion of tetrahydrodipicolinate to LL- diaminopimelate; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. LL-diaminopimelate aminotransferase subfamily. (394 aa)
AME04054.1Branched chain amino acid aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (341 aa)
AME04767.1Acetolactate synthase catalytic subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (560 aa)
AME04116.1Acetolactate synthase small subunit; Derived by automated computational analysis using gene prediction method: Protein Homology. (166 aa)
AME04132.1Methionine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (372 aa)
AXE86_08635Hypothetical protein; Incomplete; partial on complete genome; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology. (537 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (389 aa)
aroKShikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (173 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (367 aa)
AME04172.1Histidinol-phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PHP hydrolase family. HisK subfamily. (262 aa)
AME04771.1Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (246 aa)
AME04772.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (295 aa)
AME04199.1Glyceraldehyde-3-phosphate dehydrogenase; NAD-dependent; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; active during glycolysis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (337 aa)
pgkPhosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (405 aa)
tpiATriose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (249 aa)
gpmI2,3-bisphosphoglycerate-independent phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (518 aa)
AME04212.1Gluconate 2-dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (343 aa)
AME04217.13-phosphoglycerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (346 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family. (434 aa)
trpDAnthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA). (338 aa)
AME04296.1Homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (802 aa)
AME04297.1Homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (588 aa)
AME04369.1Acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. (149 aa)
AME04370.13-deoxy-7-phosphoheptulonate synthase; Catalyzes the formation of 3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate from phosphoenolpyruvate and D-erythrose 4-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (337 aa)
AME04371.1Arogenate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (296 aa)
proBGlutamate 5-kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (374 aa)
proAGamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (431 aa)
AME04416.1Threonine dehydratase; Catalyzes the formation of 2-oxobutanoate from L-threonine; Derived by automated computational analysis using gene prediction method: Protein Homology. (415 aa)
aroQ3-dehydroquinate dehydratase; Catalyzes a trans-dehydration via an enolate intermediate. Belongs to the type-II 3-dehydroquinase family. (149 aa)
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (317 aa)
AME04472.1Serine acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (240 aa)
AME04490.1Aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (412 aa)
AME04491.1Aspartate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the aspartokinase family. (410 aa)
aroA3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (434 aa)
hisIBifunctional phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family. (234 aa)
hisFImidazole glycerol phosphate synthase cyclase subunit; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (255 aa)
hisA1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide isomerase; Catalyzes the formation of 5-(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino-l- (5-hosphoribosyl)imidazole-4-carboxamide from 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide; Derived by automated computational analysis using gene prediction method: Protein Homology. (240 aa)
hisHImidazole glycerol phosphate synthase subunit HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (203 aa)
hisBImidazoleglycerol-phosphate dehydratase; Catalyzes the dehydration of D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate to 3-(imidazol-4-yl)-2-oxopropyl phosphate in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (199 aa)
hisCHistidinol phosphate aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (354 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (448 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Short subfamily. (221 aa)
hisZATP phosphoribosyltransferase regulatory subunit; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine. (399 aa)
ilvDDihydroxy-acid dehydratase; Catalyzes the dehydration of 2,3-dihydroxy-3-methylbutanoate to 3-methyl-2-oxobutanoate in valine and isoleucine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the IlvD/Edd family. (550 aa)
AME04629.1Fructose-bisphosphate aldolase; Catalyzes the formation of glycerone phosphate and glyceraldehyde 3-phosphate from fructose 1,6, bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology. (332 aa)
AME04632.1Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (313 aa)
AME04633.1Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (283 aa)
argHArgininosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology. (475 aa)
AXE86_11475Argininosuccinate synthase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline. (311 aa)
argDAcetylornithine aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (401 aa)
argBAcetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (294 aa)
argJOrnithine acetyltransferase; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis: the synthesis of N-acetylglutamate from glutamate and acetyl-CoA as the acetyl donor, and of ornithine by transacetylation between N(2)-acetylornithine and glutamate. Belongs to the ArgJ family. (403 aa)
argCN-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (344 aa)
thrBHomoserine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (316 aa)
AME04643.1Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (433 aa)
Your Current Organism:
Selenomonas
NCBI taxonomy Id: 713030
Other names: S. sp. oral taxon 136, Selenomonas sp. oral taxon 136
Server load: low (12%) [HD]