Your Input: | |||||
pyrG | CTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (541 aa) | ||||
BST96_01080 | ATP-dependent chaperone ClpB; Frameshifted; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the multicopper oxidase YfiH/RL5 family. (250 aa) | ||||
ARN72820.1 | 23S rRNA pseudouridine(1911/1915/1917) synthase; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family. (317 aa) | ||||
ileS | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (939 aa) | ||||
pheT | phenylalanine--tRNA ligase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (796 aa) | ||||
pheS | phenylalanine--tRNA ligase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (338 aa) | ||||
rplT | 50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa) | ||||
rpmI | 50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family. (64 aa) | ||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (176 aa) | ||||
thrS | threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (645 aa) | ||||
ARN72909.1 | 30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (558 aa) | ||||
gatC | Rod shape-determining protein; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (95 aa) | ||||
gatA | aspartyl/glutamyl-tRNA amidotransferase subunit A; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (486 aa) | ||||
gatB | aspartyl/glutamyl-tRNA amidotransferase subunit B; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (481 aa) | ||||
ppa | Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (175 aa) | ||||
pnp | Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (706 aa) | ||||
rpsO | 30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (89 aa) | ||||
truB | tRNA pseudouridine(55) synthase TruB; Responsible for synthesis of pseudouridine from uracil-55 in the psi GC loop of transfer RNAs; Belongs to the pseudouridine synthase TruB family. Type 1 subfamily. (319 aa) | ||||
rbfA | Ribosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (129 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (880 aa) | ||||
nusA | Transcription termination/antitermination protein NusA; Participates in both transcription termination and antitermination. (501 aa) | ||||
rimP | Ribosome maturation factor RimP; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (151 aa) | ||||
ARN73005.1 | Preprotein translocase subunit SecG; Involved in protein export. Participates in an early event of protein translocation; Belongs to the SecG family. (137 aa) | ||||
ARN73176.1 | RNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family. (394 aa) | ||||
ARN73233.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (230 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (158 aa) | ||||
ARN73472.1 | Coenzyme A pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (196 aa) | ||||
tuf | Translation elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (407 aa) | ||||
fusA | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (697 aa) | ||||
gluQ | tRNA glutamyl-Q(34) synthetase GluQRS; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon; Belongs to the class-I aminoacyl-tRNA synthetase family. GluQ subfamily. (296 aa) | ||||
efp | Elongation factor P lysine(34) lysyltransferase; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Modification of Lys-34 is required for alleviation; Belongs to the elongation factor P family. (189 aa) | ||||
ARN73572.1 | GTP-binding protein TypA; Derived by automated computational analysis using gene prediction method: Protein Homology. (604 aa) | ||||
gpmI | Phosphoglycerate mutase (2,3-diphosphoglycerate-independent); Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (518 aa) | ||||
ARN73625.1 | Haloacid dehalogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (222 aa) | ||||
ARN73666.1 | ATP-dependent RNA helicase DbpA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the DEAD box helicase family. (460 aa) | ||||
thyA | Dihydrofolate reductase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (279 aa) | ||||
lgt | Prolipoprotein diacylglyceryl transferase; Catalyzes the transfer of the diacylglyceryl group from phosphatidylglycerol to the sulfhydryl group of the N-terminal cysteine of a prolipoprotein, the first step in the formation of mature lipoproteins; Belongs to the Lgt family. (288 aa) | ||||
ARN73730.1 | Non-canonical purine NTP pyrophosphatase, RdgB/HAM1 family; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions. Belongs to the HAM1 NTPase family. (196 aa) | ||||
ARN73739.1 | Adenylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (363 aa) | ||||
ARN76329.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (367 aa) | ||||
atpC | F0F1 ATP synthase subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane. (140 aa) | ||||
atpD | F0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits. (465 aa) | ||||
atpG | F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (288 aa) | ||||
atpA | F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. (514 aa) | ||||
atpH | F0F1 ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (178 aa) | ||||
atpF | F0F1 ATP synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (156 aa) | ||||
atpE | F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (79 aa) | ||||
atpB | F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (308 aa) | ||||
yidC | Membrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins. (566 aa) | ||||
ARN73995.1 | Membrane protein insertion efficiency factor YidD; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family. (82 aa) | ||||
rnpA | Ribonuclease P protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme. (136 aa) | ||||
rpmH | 50S ribosomal protein L34; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL34 family. (44 aa) | ||||
ARN74148.1 | Adenylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (965 aa) | ||||
ARN74162.1 | Bifunctional GTP diphosphokinase/guanosine-3',5'-bis(diphosphate) 3'-diphosphatase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (723 aa) | ||||
rpoZ | DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits. (91 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (211 aa) | ||||
rph | Ribonuclease PH; Phosphorolytic 3'-5' exoribonuclease that plays an important role in tRNA 3'-end maturation. Removes nucleotide residues following the 3'-CCA terminus of tRNAs; can also add nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates, but this may not be physiologically important. Probably plays a role in initiation of 16S rRNA degradation (leading to ribosome degradation) during starvation. (239 aa) | ||||
rpmB | 50S ribosomal protein L28; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family. (78 aa) | ||||
rpmG | 50S ribosomal protein L33; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL33 family. (55 aa) | ||||
ftsY | Signal recognition particle-docking protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (363 aa) | ||||
asnS | asparagine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (465 aa) | ||||
ARN74191.1 | Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the RNR ribonuclease family. (657 aa) | ||||
ARN74272.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (314 aa) | ||||
rpsU | 30S ribosomal protein S21; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS21 family. (71 aa) | ||||
nnrE | Bifunctional ADP-dependent (S)-NAD(P)H-hydrate dehydratase/NAD(P)H-hydrate epimerase; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-spec [...] (501 aa) | ||||
rnr | Ribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (796 aa) | ||||
rpsF | 30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (143 aa) | ||||
rpsR | 30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (75 aa) | ||||
rplI | 50S ribosomal protein L9; Binds to the 23S rRNA. (149 aa) | ||||
argS | arginine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (564 aa) | ||||
rpmE | 50S ribosomal protein L31; Binds the 23S rRNA. (71 aa) | ||||
tyrS | tyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (435 aa) | ||||
secE | Preprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation; Belongs to the SecE/SEC61-gamma family. (122 aa) | ||||
nusG | Transcription termination/antitermination protein NusG; Participates in transcription elongation, termination and antitermination. (176 aa) | ||||
rplK | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (144 aa) | ||||
rplA | 50S ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (232 aa) | ||||
rplJ | 50S ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (164 aa) | ||||
rplL | 50S ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (124 aa) | ||||
rpoB | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1358 aa) | ||||
rpoC | DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1407 aa) | ||||
rpsL | 30S ribosomal protein S12; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (123 aa) | ||||
rpsG | 30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
fusA-2 | Translation elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 s [...] (702 aa) | ||||
ARN74447.1 | Translation elongation factor Tu; Derived by automated computational analysis using gene prediction method: Protein Homology. (407 aa) | ||||
rpsJ | 30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (103 aa) | ||||
rplC | 50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit. (232 aa) | ||||
rplD | 50S ribosomal protein L4; Forms part of the polypeptide exit tunnel. (206 aa) | ||||
rplW | 50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (95 aa) | ||||
rplB | 50S ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (275 aa) | ||||
rpsS | 30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (90 aa) | ||||
rplV | 50S ribosomal protein L22; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (112 aa) | ||||
rpsC | 30S ribosomal protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (225 aa) | ||||
rplP | 50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (137 aa) | ||||
rpmC | 50S ribosomal protein L29; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uL29 family. (63 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (88 aa) | ||||
rplN | 50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rplX | 50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (104 aa) | ||||
rplE | 50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (179 aa) | ||||
rpsN | 30S ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site; Belongs to the universal ribosomal protein uS14 family. (101 aa) | ||||
rpsH | 30S ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (131 aa) | ||||
rplF | 50S ribosomal protein L6; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (177 aa) | ||||
rplR | 50S ribosomal protein L18; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (116 aa) | ||||
rpsE | 30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (170 aa) | ||||
rpmD | 50S ribosomal protein L30; Derived by automated computational analysis using gene prediction method: Protein Homology. (60 aa) | ||||
rplO | 50S ribosomal protein L15; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (148 aa) | ||||
secY | Preprotein translocase subunit SecY; The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. (441 aa) | ||||
rpmJ | 50S ribosomal protein L36; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL36 family. (38 aa) | ||||
rpsM | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (118 aa) | ||||
rpsK | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (129 aa) | ||||
rpsD | 30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa) | ||||
rpoA | DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (334 aa) | ||||
rplQ | 50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method: Protein Homology. (130 aa) | ||||
rplU | 50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
rpmA | 50S ribosomal protein L27; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family. (85 aa) | ||||
obgE | GTPase ObgE; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (401 aa) | ||||
rpsT | 30S ribosomal protein S20; Binds directly to 16S ribosomal RNA. (88 aa) | ||||
ARN74555.1 | Ribonucleotide-diphosphate reductase subunit beta; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides; Belongs to the ribonucleoside diphosphate reductase small chain family. (415 aa) | ||||
ARN74556.1 | Ribonucleoside-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. (966 aa) | ||||
ppnP | Ligand-gated channel protein; Catalyzes the phosphorolysis of diverse nucleosides, yielding D-ribose 1-phosphate and the respective free bases. Can use uridine, adenosine, guanosine, cytidine, thymidine, inosine and xanthosine as substrates. Also catalyzes the reverse reactions. (93 aa) | ||||
ychF | Redox-regulated ATPase YchF; ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in a nucleotide-independent manner. (363 aa) | ||||
pth | aminoacyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (194 aa) | ||||
rplY | 50S ribosomal protein L25/general stress protein Ctc; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (220 aa) | ||||
ARN74670.1 | Outer membrane lipoprotein LolB; Plays a critical role in the incorporation of lipoproteins in the outer membrane after they are released by the LolA protein. (194 aa) | ||||
ARN76376.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (574 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (361 aa) | ||||
prmC | protein-(glutamine-N5) methyltransferase, release factor-specific; Methylates the class 1 translation termination release factors RF1/PrfA and RF2/PrfB on the glutamine residue of the universally conserved GGQ motif; Belongs to the protein N5-glutamine methyltransferase family. PrmC subfamily. (285 aa) | ||||
rhlB | ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (458 aa) | ||||
nadD | Nicotinic acid mononucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (217 aa) | ||||
leuS | leucine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (825 aa) | ||||
rhlE | ATP-dependent RNA helicase; DEAD-box RNA helicase involved in ribosome assembly. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. (450 aa) | ||||
ARN74802.1 | DNA mismatch repair protein MutT; Derived by automated computational analysis using gene prediction method: Protein Homology. (189 aa) | ||||
ARN74858.1 | Ribosomal subunit interface protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (102 aa) | ||||
rplM | 50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (142 aa) | ||||
rpsI | 30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family. (130 aa) | ||||
ARN74904.1 | Elongation factor P-like protein YeiP; Derived by automated computational analysis using gene prediction method: Protein Homology. (168 aa) | ||||
rapA | RNA polymerase-binding ATPase; Transcription regulator that activates transcription by stimulating RNA polymerase (RNAP) recycling in case of stress conditions such as supercoiled DNA or high salt concentrations. Probably acts by releasing the RNAP, when it is trapped or immobilized on tightly supercoiled DNA. Does not activate transcription on linear DNA. Probably not involved in DNA repair; Belongs to the SNF2/RAD54 helicase family. RapA subfamily. (980 aa) | ||||
ARN74918.1 | aminoacyl-tRNA hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (137 aa) | ||||
map | Type I methionyl aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily. (260 aa) | ||||
rpsB | 30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family. (248 aa) | ||||
tsf | Translation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (287 aa) | ||||
pyrH | UMP kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (241 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
uppS | Di-trans,poly-cis-decaprenylcistransferase; Catalyzes the sequential condensation of isopentenyl diphosphate (IPP) with (2E,6E)-farnesyl diphosphate (E,E-FPP) to yield (2Z,6Z,10Z,14Z,18Z,22Z,26Z,30Z,34E,38E)-undecaprenyl diphosphate (di- trans,octa-cis-UPP). UPP is the precursor of glycosyl carrier lipid in the biosynthesis of bacterial cell wall polysaccharide components such as peptidoglycan and lipopolysaccharide. (254 aa) | ||||
ARN74991.1 | Phosphatidate cytidylyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CDS family. (277 aa) | ||||
ARN74993.1 | RIP metalloprotease RseP; Derived by automated computational analysis using gene prediction method: Protein Homology. (451 aa) | ||||
gltX | glutamate--tRNA ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. (495 aa) | ||||
metG | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (678 aa) | ||||
ARN75054.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (936 aa) | ||||
ARN75060.1 | Cell division protein DedD; Derived by automated computational analysis using gene prediction method: Protein Homology. (157 aa) | ||||
tmcA | Hypothetical protein; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of tRNA(Met), by using acetyl-CoA as an acetyl donor and ATP (or GTP). (713 aa) | ||||
proS | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] (575 aa) | ||||
aspS | aspartate--tRNA ligase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (591 aa) | ||||
ARN75285.1 | ATP-dependent RNA helicase HrpA; Derived by automated computational analysis using gene prediction method: Protein Homology. (1319 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (348 aa) | ||||
lysS | lysine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (504 aa) | ||||
ARN75330.1 | Adenylyl cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology. (505 aa) | ||||
guaB | IMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (489 aa) | ||||
guaA | Glutamine-hydrolyzing GMP synthase; Catalyzes the synthesis of GMP from XMP. (525 aa) | ||||
ARN75361.1 | GTP diphosphokinase; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (743 aa) | ||||
ARN76440.1 | Nucleoside triphosphate pyrophosphohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (257 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (215 aa) | ||||
ARN75365.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (643 aa) | ||||
ARN75369.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (148 aa) | ||||
ARN75372.1 | Cold shock domain protein CspD; Derived by automated computational analysis using gene prediction method: Protein Homology. (69 aa) | ||||
valS | valine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (925 aa) | ||||
secF | Protein-export membrane protein SecD; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. (312 aa) | ||||
ffh | Signal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual componen [...] (457 aa) | ||||
rpsP | 30S ribosomal protein S16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS16 family. (82 aa) | ||||
rimM | Ribosome maturation factor RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (179 aa) | ||||
trmD | tRNA (guanosine(37)-N1)-methyltransferase TrmD; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (247 aa) | ||||
rplS | 50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (118 aa) | ||||
rne | Ribonuclease E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Belongs to the RNase E/G family. RNase E subfamily. (897 aa) | ||||
ARN76457.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (185 aa) | ||||
rpmF | 50S ribosomal protein L32; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family. (60 aa) | ||||
tmk | dTMP kinase; Phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis; Belongs to the thymidylate kinase family. (213 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (443 aa) | ||||
ARN75561.1 | Cold-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (69 aa) | ||||
ARN75671.1 | ABC transporter ATP-binding protein; Uup; in Escherichia coli this cytoplasmic protein was shown to contain ATPase activity; mutations in this gene affect RecA-independent excision of transposons and affects Mu bacteriophage growth; Derived by automated computational analysis using gene prediction method: Protein Homology. (633 aa) | ||||
ARN75775.1 | RNA-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (81 aa) | ||||
serS | serine--tRNA ligase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (429 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
ARN75786.1 | Cold shock domain protein CspD; Derived by automated computational analysis using gene prediction method: Protein Homology. (90 aa) | ||||
rnd | Ribonuclease D; Exonuclease involved in the 3' processing of various precursor tRNAs. Initiates hydrolysis at the 3'-terminus of an RNA molecule and releases 5'-mononucleotides; Belongs to the RNase D family. (380 aa) | ||||
glnS | glutamine--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (564 aa) | ||||
ARN75974.1 | Serine protein kinase RIO; Derived by automated computational analysis using gene prediction method: Protein Homology. (285 aa) | ||||
ARN75975.1 | ABC-F family ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology. (536 aa) | ||||
hisS | histidine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa) | ||||
ndk | Nucleoside-diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (142 aa) | ||||
ARN76053.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (160 aa) | ||||
cysS | cysteine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (455 aa) | ||||
ARN76090.1 | 5'-nucleotidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (300 aa) | ||||
yajC | Preprotein translocase subunit YajC; The SecYEG-SecDF-YajC-YidC holo-translocon (HTL) protein secretase/insertase is a supercomplex required for protein secretion, insertion of proteins into membranes, and assembly of membrane protein complexes. While the SecYEG complex is essential for assembly of a number of proteins and complexes, the SecDF-YajC-YidC subcomplex facilitates these functions. (109 aa) | ||||
ARN76150.1 | Damage-inducible protein CinA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the CinA family. (423 aa) | ||||
rmf | Ribosome modulation factor; During stationary phase, converts 70S ribosomes to an inactive dimeric form (100S ribosomes); Belongs to the ribosome modulation factor family. (67 aa) |