STRINGSTRING
Fip1 Fip1 CstF64 CstF64 RpI12 RpI12 Cpsf100 Cpsf100 Cpsf160 Cpsf160 CG4266 CG4266 Pcf11 Pcf11 RpII15 RpII15 Cpsf6 Cpsf6 Clp Clp
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Fip1Factor interacting with poly(A) polymerase 1; Myosin binding. It is involved in the biological process described with: mRNA polyadenylation; positive regulation of transcription by RNA polymerase II; pre-mRNA cleavage required for polyadenylation; mRNA 3'-end processing by stem-loop binding and cleavage. (701 aa)
CstF64Cleavage stimulation factor 64 kD subunit (CstF64) encodes an RNA-binding protein that is part of the cleavage stimulation factor (CstF) complex. As part of the CstF complex, it interacts with the polyadenylation protein encoded bysu(f). The product of CstF64 is necessary for the cleavage and polyadenylation of most mRNAs and for 3' end processing of mRNAs that encode the replication-dependent histones. (419 aa)
RpI12DNA-directed RNA polymerase subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Belongs to the archaeal rpoM/eukaryotic RPA12/RPB9/RPC11 RNA polymerase family. (120 aa)
Cpsf100Probable cleavage and polyadenylation specificity factor subunit 2; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Required for the cotranscriptional processing of 3'- ends of polyadenylated and histone pre-mRNA. (756 aa)
Cpsf160Cleavage and polyadenylation specificity factor subunit 1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction (By similarity); Belongs to the CPSF1 family. (1455 aa)
CG4266Uncharacterized protein, isoform B; mRNA binding; nucleic acid binding. (1306 aa)
Pcf11Protein 1 of cleavage and polyadenylation factor 1 (Pcf11) encodes an RNA binding protein involved in RNA splicing regulation. (1953 aa)
RpII15DNA-directed RNA polymerase II subunit RPB9; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template (By similarity); Belongs to the archaeal RpoM [...] (129 aa)
Cpsf6Cleavage and polyadenylation specificity factor subunit CG7185; May play a role in pre-mRNA 3'-processing; Belongs to the RRM CPSF6/7 family. (652 aa)
ClpCleavage and polyadenylation specificity factor subunit 4; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity. Binds RNA polymers with a preference for G- and/or C-rich clusters. Binds single-stranded DNA non-specifically. (296 aa)
Your Current Organism:
Drosophila melanogaster
NCBI taxonomy Id: 7227
Other names: D. melanogaster, Diptera sp. DNAS-2A9-224646, Sophophora melanogaster, fruit fly
Server load: low (26%) [HD]