STRINGSTRING
hemG hemG rnfG rnfG azoR azoR fldA_2 fldA_2 yedZ yedZ dusA dusA coaBC coaBC KKA99731.1 KKA99731.1 dus_3 dus_3 glpA glpA PdxH PdxH nqrB_2 nqrB_2 nqrC nqrC dusC dusC mioC mioC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
hemGProtoporphyrinogen oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (173 aa)
rnfGElectron transporter RnfG; Part of a membrane-bound complex that couples electron transfer with translocation of ions across the membrane. Belongs to the RnfG family. (210 aa)
azoRFMN-dependent NADH-azoreductase; Catalyzes the reductive cleavage of azo bond in aromatic azo compounds to the corresponding amines. Requires NADH, but not NADPH, as an electron donor for its activity; Belongs to the azoreductase type 1 family. (193 aa)
fldA_2Flavodoxin FldA; Low-potential electron donor to a number of redox enzymes. Belongs to the flavodoxin family. (175 aa)
yedZHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (191 aa)
dusAtRNA-dihydrouridine synthase A; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines. Specifically modifies U20 and U20a in tRNAs; Belongs to the Dus family. DusA subfamily. (332 aa)
coaBCBifunctional phosphopantothenoylcysteine decarboxylase/phosphopantothenate synthase; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (410 aa)
KKA99731.1Flavodoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (210 aa)
dus_3tRNA-dihydrouridine synthase B; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines; Belongs to the Dus family. DusB subfamily. (332 aa)
glpAGlycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent glycerol-3-phosphate dehydrogenase family. (563 aa)
PdxHPyridoxamine 5'-phosphate oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology. (211 aa)
nqrB_2Na(+)-translocating NADH-quinone reductase subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (412 aa)
nqrCNa(+)-translocating NADH-quinone reductase subunit C; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (258 aa)
dusCtRNA-dihydrouridine synthase C; Catalyzes the synthesis of 5,6-dihydrouridine (D), a modified base found in the D-loop of most tRNAs, via the reduction of the C5-C6 double bond in target uridines. Specifically modifies U16 in tRNAs. Belongs to the Dus family. DusC subfamily. (312 aa)
mioCmioC; Derived by automated computational analysis using gene prediction method: Protein Homology. (147 aa)
Your Current Organism:
Avibacterium paragallinarum
NCBI taxonomy Id: 728
Other names: A. paragallinarum, ATCC 29545, CCUG 12835, CIP 103453, DSM 18554, Haemophilus gallinarum, Haemophilus paragallinarum, NCTC 11296
Server load: low (20%) [HD]