STRINGSTRING
asnS asnS pheS pheS hisS hisS proS proS glyS glyS gltX gltX ileS ileS trpS trpS cysS cysS leuS leuS lysS lysS metG metG tyrS tyrS thrS thrS serS serS glnS glnS glyQ glyQ pheT pheT alaS alaS valS valS argS argS aspS_1 aspS_1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
asnSasparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa)
pheSphenylalanyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (329 aa)
hisSHistidinol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (423 aa)
proSproline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] (571 aa)
glySglycine-tRNA synthetase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (687 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (480 aa)
ileSisoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (939 aa)
trpStryptophan--tRNA ligase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (333 aa)
cysScysteine--tRNA ligase; Catalyzes a two-step reaction; charges a cysteine by linking its carboxyl group to the alpha-phosphate of ATP then transfers the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (459 aa)
leuSleucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...] (860 aa)
lysSlysine--tRNA ligase; Class II; LysRS2; catalyzes a two-step reaction, first charging a lysine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; in Methanosarcina barkeri, LysRS2 charges both tRNA molecules for lysine that exist in this organism and in addition can charge the tRNAPyl with lysine in the presence of LysRS1; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (501 aa)
metGmethionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (683 aa)
tyrStyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (399 aa)
thrSthreonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (643 aa)
serSseryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (429 aa)
glnSglutamate--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (552 aa)
glyQglycyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa)
pheTphenylalanine--tRNA ligase; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a tetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 2 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (795 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (874 aa)
valSvaline--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (954 aa)
argSarginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (577 aa)
aspS_1aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (592 aa)
Your Current Organism:
Avibacterium paragallinarum
NCBI taxonomy Id: 728
Other names: A. paragallinarum, ATCC 29545, CCUG 12835, CIP 103453, DSM 18554, Haemophilus gallinarum, Haemophilus paragallinarum, NCTC 11296
Server load: low (14%) [HD]