STRINGSTRING
dnaJ dnaJ gmhB gmhB alaS alaS gltX gltX aroB aroB secA secA gmhA gmhA KKB00258.1 KKB00258.1 rpoC rpoC nudC nudC fucA fucA tdk tdk dnaG dnaG hslO hslO KKB00047.1 KKB00047.1 rpe rpe ileS ileS rne rne ulaE_1 ulaE_1 uvrA uvrA cysS cysS nanK nanK mutM mutM radC radC ligA ligA queC queC queD queD tadA tadA rseP rseP manA manA znuC znuC metE metE metG metG tgt tgt dapE dapE recR recR folE folE hflB hflB PepT PepT thrS thrS nrdR nrdR ribD ribD gloB gloB dksA dksA rsgA rsgA htpX htpX accD accD kpsF kpsF nagK nagK ribA ribA radA radA can can pepT_3 pepT_3 mepA mepA fur fur ybeY ybeY lpxC lpxC prlC prlC yggG yggG hisD hisD hisB hisB galT galT priA priA rpmE rpmE sprT sprT clpX clpX
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
dnaJMolecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (381 aa)
gmhBD,D-heptose 1,7-bisphosphate phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa)
alaSalanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (874 aa)
gltXglutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (480 aa)
aroB3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (362 aa)
secAPreprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. Belongs to the SecA family. (901 aa)
gmhAPhosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. (193 aa)
KKB00258.1Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa)
rpoCDNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (1420 aa)
nudCNADH pyrophosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Nudix hydrolase family. NudC subfamily. (269 aa)
fucAFuculose phosphate aldolase; Involved in the degradation of L-fucose and D-arabinose. Catalyzes the reversible cleavage of L-fuculose 1-phosphate (Fuc1P) to yield dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. (215 aa)
tdkThymidine kinase; Catalyzes the formation of thymidine 5'-phosphate from thymidine; Derived by automated computational analysis using gene prediction method: Protein Homology. (193 aa)
dnaGDNA primase; RNA polymerase that catalyzes the synthesis of short RNA molecules used as primers for DNA polymerase during DNA replication. (586 aa)
hslOHsp33-like chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. (289 aa)
KKB00047.1Sulfurtransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (343 aa)
rpeRibulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family. (224 aa)
ileSisoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (939 aa)
rneRibonuclease E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Belongs to the RNase E/G family. RNase E subfamily. (936 aa)
ulaE_1L-xylulose 5-phosphate 3-epimerase activity not yet demonstrated; may be involved in the utilization of 2,3-diketo-L-gulonate; Derived by automated computational analysis using gene prediction method: Protein Homology. (286 aa)
uvrAExcinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (942 aa)
cysScysteine--tRNA ligase; Catalyzes a two-step reaction; charges a cysteine by linking its carboxyl group to the alpha-phosphate of ATP then transfers the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (459 aa)
nanKN-acetylmannosamine kinase; Catalyzes the phosphorylation of N-acetylmannosamine (ManNAc) to ManNAc-6-P; Belongs to the ROK (NagC/XylR) family. NanK subfamily. (293 aa)
mutMformamidopyrimidine-DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates. (270 aa)
radCHypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0758 family. (218 aa)
ligANAD-dependent DNA ligase LigA; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA; Belongs to the NAD-dependent DNA ligase family. LigA subfamily. (675 aa)
queC7-cyano-7-deazaguanine synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). Belongs to the QueC family. (227 aa)
queD6-carboxy-5,6,7,8-tetrahydropterin synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (141 aa)
tadAtRNA-specific adenosine deaminase; Catalyzes the deamination of adenosine to inosine at the wobble position 34 of tRNA(Arg2); Belongs to the cytidine and deoxycytidylate deaminase family. (161 aa)
rsePZinc metallopeptidase RseP; Catalyzes the cleavage of RseA which activates the sigmaE-mediated stress response; Derived by automated computational analysis using gene prediction method: Protein Homology. (443 aa)
manAMannose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (402 aa)
znuCZinc ABC transporter ATPase; Part of the ABC transporter complex ZnuABC involved in zinc import. Responsible for energy coupling to the transport system. Belongs to the ABC transporter superfamily. Zinc importer (TC 3.A.1.15.5) family. (264 aa)
metE5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family. (758 aa)
metGmethionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (683 aa)
tgtQueuine tRNA-ribosyltransferase; Catalyzes the base-exchange of a guanine (G) residue with the queuine precursor 7-aminomethyl-7-deazaguanine (PreQ1) at position 34 (anticodon wobble position) in tRNAs with GU(N) anticodons (tRNA-Asp, - Asn, -His and -Tyr). Catalysis occurs through a double-displacement mechanism. The nucleophile active site attacks the C1' of nucleotide 34 to detach the guanine base from the RNA, forming a covalent enzyme-RNA intermediate. The proton acceptor active site deprotonates the incoming PreQ1, allowing a nucleophilic attack on the C1' of the ribose to form t [...] (391 aa)
dapESuccinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily. (379 aa)
recRRecombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (201 aa)
folEGTP cyclohydrolase; Involved in the first step of tetrahydrofolate biosynthesis; catalyzes the formation of formate and 2-amino-4-hydroxy-6-(erythro-1,2, 3-trihydroxypropyl)dihydropteridine triphosphate from GTP and water; forms a homopolymer; Derived by automated computational analysis using gene prediction method: Protein Homology. (217 aa)
hflBATP-dependent metalloprotease; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family. (630 aa)
PepTPeptidase T; Cleaves the N-terminal amino acid of tripeptides. Belongs to the peptidase M20B family. (406 aa)
thrSthreonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (643 aa)
nrdRNrdR family transcriptional regulator; Negatively regulates transcription of bacterial ribonucleotide reductase nrd genes and operons by binding to NrdR- boxes; Belongs to the NrdR family. (149 aa)
ribD5-amino-6-(5-phosphoribosylamino)uracil reductase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate; In the C-terminal section; belongs to the HTP reductase family. (374 aa)
gloBHydroxyacylglutathione hydrolase; Thiolesterase that catalyzes the hydrolysis of S-D-lactoyl- glutathione to form glutathione and D-lactic acid. (233 aa)
dksAMolecular chaperone DnaK; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression. (145 aa)
rsgAGTPase RsgA; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Helps release RbfA from mature subunits. May play a role in the assembly of ribosomal proteins into the subunit. Circularly permuted GTPase that catalyzes slow GTP hydrolysis, GTPase activity is stimulated by the 30S ribosomal subunit; Belongs to the TRAFAC class YlqF/YawG GTPase family. RsgA subfamily. (352 aa)
htpXHeat shock protein HtpX; Metalloprotease; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the peptidase M48B family. (288 aa)
accDacetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (299 aa)
kpsFArabinose 5-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (311 aa)
nagKN-acetylglucosamine kinase; Catalyzes the phosphorylation of N-acetyl-D-glucosamine (GlcNAc) derived from cell-wall degradation, yielding GlcNAc-6-P. (304 aa)
ribAGTP cyclohydrolase; Catalyzes the conversion of GTP to 2,5-diamino-6- ribosylamino-4(3H)-pyrimidinone 5'-phosphate (DARP), formate and pyrophosphate; Belongs to the GTP cyclohydrolase II family. (218 aa)
radADNA repair protein RadA; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. (457 aa)
canCarbonic anhydrase; Reversible hydration of carbon dioxide. Belongs to the beta-class carbonic anhydrase family. (232 aa)
pepT_3Peptidase T; Cleaves the N-terminal amino acid of tripeptides. Belongs to the peptidase M20B family. (418 aa)
mepAMurein endopeptidase; Murein endopeptidase that cleaves the D-alanyl-meso-2,6- diamino-pimelyl amide bond that connects peptidoglycan strands. Likely plays a role in the removal of murein from the sacculus. (281 aa)
furFur family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Fur family. (148 aa)
ybeYMetal-binding heat shock protein; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. (155 aa)
lpxCUDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase; Catalyzes the hydrolysis of UDP-3-O-myristoyl-N- acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate, the committed step in lipid A biosynthesis; Belongs to the LpxC family. (305 aa)
prlCDerived by automated computational analysis using gene prediction method: Protein Homology. (681 aa)
yggGDeoxyribonuclease HsdR; Derived by automated computational analysis using gene prediction method: Protein Homology. (256 aa)
hisDHistidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (432 aa)
hisBImidazoleglycerol-phosphate dehydratase; Catalyzes the formation of 3-(imidazol-4-yl)-2-oxopropyl phosphate from D-ethythro-1-(imidazol-4-yl)glycerol 3-phosphate and histidinol from histidinol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the histidinol- phosphatase family. (364 aa)
galTGalactose-1-phosphate uridylyltransferase; Catalyzes the interconversion of UDP-galactose and galactose-1-P with UDP-galactose and glucose-1-P; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the galactose-1-phosphate uridylyltransferase type 1 family. (347 aa)
priAPrimosomal protein N; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA; Belongs to the helicase family. PriA subfamily. (728 aa)
rpmE50S ribosomal protein L31; Binds the 23S rRNA. (70 aa)
sprTsprT; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SprT family. (168 aa)
clpXClp protease ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. (416 aa)
Your Current Organism:
Avibacterium paragallinarum
NCBI taxonomy Id: 728
Other names: A. paragallinarum, ATCC 29545, CCUG 12835, CIP 103453, DSM 18554, Haemophilus gallinarum, Haemophilus paragallinarum, NCTC 11296
Server load: low (22%) [HD]