Your Input: | |||||
talB | Transaldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa) | ||||
asnA | Asparagine synthetase AsnA; Catalyzes the formation of asparagine from aspartate and ammonia; Derived by automated computational analysis using gene prediction method: Protein Homology. (330 aa) | ||||
tusD | Sulfur transfer complex subunit TusD; In Escherichai coli the heterohexameric TusBCD complex is involved in sulfur related that results in thiouridation to U34 position in some tRNAs; Derived by automated computational analysis using gene prediction method: Protein Homology. (126 aa) | ||||
fusA | Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. (700 aa) | ||||
argC | N-acetyl-gamma-glutamyl-phosphate reductase; Catalyzes the NADPH-dependent reduction of N-acetyl-5- glutamyl phosphate to yield N-acetyl-L-glutamate 5-semialdehyde. Belongs to the NAGSA dehydrogenase family. Type 1 subfamily. (335 aa) | ||||
argB | Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily. (257 aa) | ||||
argH | Argininosuccinate lyase; Catalyzes the formation of arginine from (N-L-arginino)succinate; Derived by automated computational analysis using gene prediction method: Protein Homology. (458 aa) | ||||
ileS | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (939 aa) | ||||
metK | S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme. (384 aa) | ||||
trpS | tryptophan--tRNA ligase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (333 aa) | ||||
ftsY | Cell division protein FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components. (472 aa) | ||||
rlmN | Ribosomal RNA large subunit methyltransferase N; Specifically methylates position 2 of adenine 2503 in 23S rRNA and position 2 of adenine 37 in tRNAs. m2A2503 modification seems to play a crucial role in the proofreading step occurring at the peptidyl transferase center and thus would serve to optimize ribosomal fidelity; Belongs to the radical SAM superfamily. RlmN family. (389 aa) | ||||
hisS | Histidinol dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (423 aa) | ||||
proB | Gamma-glutamyl kinase; Catalyzes the transfer of a phosphate group to glutamate to form L-glutamate 5-phosphate. (368 aa) | ||||
purL | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1297 aa) | ||||
recF | DNA replication protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP; Belongs to the RecF family. (358 aa) | ||||
dnaN | DNA polymerase III subunit beta; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP- independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3'-5' exonuclease proofreading activity. The beta chain is required for initiation of [...] (366 aa) | ||||
dnaA | Chromosomal replication initiation protein; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. Belongs to the DnaA family. (456 aa) | ||||
metJ | Transcriptional repressor protein MetJ; This regulatory protein, when combined with SAM (S- adenosylmethionine) represses the expression of the methionine regulon and of enzymes involved in SAM synthesis; Belongs to the MetJ family. (105 aa) | ||||
pckA | Phosphoenolpyruvate carboxykinase; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. Belongs to the phosphoenolpyruvate carboxykinase (ATP) family. (538 aa) | ||||
hslO | Hsp33-like chaperonin; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. (289 aa) | ||||
rpoD | RNA polymerase sigma factor RpoD; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (620 aa) | ||||
tsaD | tRNA threonylcarbamoyladenosine biosynthesis protein Gcp; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction; Belongs to the KAE1 / TsaD family. (344 aa) | ||||
tdk | Thymidine kinase; Catalyzes the formation of thymidine 5'-phosphate from thymidine; Derived by automated computational analysis using gene prediction method: Protein Homology. (193 aa) | ||||
deoC | Deoxyribose-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate; Belongs to the DeoC/FbaB aldolase family. DeoC type 1 subfamily. (224 aa) | ||||
fucI | Sugar isomerase; Converts the aldose L-fucose into the corresponding ketose L- fuculose. (588 aa) | ||||
fucU | Fucose isomerase; Involved in the anomeric conversion of L-fucose. (152 aa) | ||||
tpiA | Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa) | ||||
hemN_2 | Coproporphyrinogen III oxidase; Catalyzes the oxygen-independent formation of protoporphyrinogen-IX from coproporphyrinogen-III; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the anaerobic coproporphyrinogen-III oxidase family. (455 aa) | ||||
proS | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] (571 aa) | ||||
recX | Recombinase RecX; Modulates RecA activity; Belongs to the RecX family. (151 aa) | ||||
recA | Recombinase RecA; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family. (359 aa) | ||||
rimO | Ribosomal protein S12 methylthiotransferase; Catalyzes the methylthiolation of an aspartic acid residue of ribosomal protein S12; Belongs to the methylthiotransferase family. RimO subfamily. (443 aa) | ||||
hemE | Uroporphyrinogen decarboxylase; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III. (354 aa) | ||||
mnmA | tRNA 2-thiouridylase; Catalyzes the 2-thiolation of uridine at the wobble position (U34) of tRNA, leading to the formation of s(2)U34. (383 aa) | ||||
coaD | Phosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (159 aa) | ||||
coaA | Pantothenate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (317 aa) | ||||
tuf | Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (394 aa) | ||||
yejK | Nucleoid-associated protein NdpA; Derived by automated computational analysis using gene prediction method: Protein Homology. (338 aa) | ||||
mobA | Molybdenum cofactor guanylyltransferase; Transfers a GMP moiety from GTP to Mo-molybdopterin (Mo-MPT) cofactor (Moco or molybdenum cofactor) to form Mo-molybdopterin guanine dinucleotide (Mo-MGD) cofactor; Belongs to the MobA family. (197 aa) | ||||
glmU | Glucosamine-1-phosphate N-acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. (457 aa) | ||||
srmB | ATP-dependent RNA helicase SrmB; DEAD-box RNA helicase involved in the assembly of the 50S ribosomal subunit at low temperature. Exhibits RNA-stimulated ATP hydrolysis and RNA unwinding activity; Belongs to the DEAD box helicase family. SrmB subfamily. (438 aa) | ||||
iscS | Cysteine desulfurase; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur atoms from cysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. (404 aa) | ||||
rimM | 16S rRNA-processing protein RimM; An accessory protein needed during the final step in the assembly of 30S ribosomal subunit, possibly for assembly of the head region. Probably interacts with S19. Essential for efficient processing of 16S rRNA. May be needed both before and after RbfA during the maturation of 16S rRNA. It has affinity for free ribosomal 30S subunits but not for 70S ribosomes; Belongs to the RimM family. (175 aa) | ||||
trmD | tRNA (guanine-N1)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs. Belongs to the RNA methyltransferase TrmD family. (250 aa) | ||||
gpsA | Glycerol-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (334 aa) | ||||
secB | Preprotein translocase subunit SecB; One of the proteins required for the normal export of preproteins out of the cell cytoplasm. It is a molecular chaperone that binds to a subset of precursor proteins, maintaining them in a translocation-competent state. It also specifically binds to its receptor SecA. (168 aa) | ||||
pgk | Phosphoglycerate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family. (389 aa) | ||||
RsmB | 16S rRNA methyltransferase; Specifically methylates the cytosine at position 967 (m5C967) of 16S rRNA. (461 aa) | ||||
rraB | RNase E inhibitor protein; Globally modulates RNA abundance by binding to RNase E (Rne) and regulating its endonucleolytic activity. Can modulate Rne action in a substrate-dependent manner by altering the composition of the degradosome. (136 aa) | ||||
deaD | DEAD/DEAH box helicase; DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation. (598 aa) | ||||
pnp | Polynucleotide phosphorylase/polyadenylase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. (709 aa) | ||||
napD | Nitrate reductase; Chaperone for NapA, the catalytic subunit of the periplasmic nitrate reductase. It binds directly and specifically to the twin- arginine signal peptide of NapA, preventing premature interaction with the Tat translocase and premature export. (95 aa) | ||||
murB | UDP-N-acetylenolpyruvoylglucosamine reductase; Cell wall formation. (344 aa) | ||||
rpoH | RNA polymerase factor sigma-32; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes. (281 aa) | ||||
tusA | Sulfurtransferase; Sulfur carrier protein which probably makes part of a sulfur- relay system; Belongs to the sulfur carrier protein TusA family. (79 aa) | ||||
gmhA | Phosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. (193 aa) | ||||
mfd | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1145 aa) | ||||
secA | Preprotein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane. Belongs to the SecA family. (901 aa) | ||||
aroB | 3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ). (362 aa) | ||||
aroK | Shikimate kinase; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (175 aa) | ||||
glyS | glycine-tRNA synthetase subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology. (687 aa) | ||||
glyQ | glycyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa) | ||||
gltX | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (480 aa) | ||||
yhdE | Septum formation inhibitor Maf; Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids. (199 aa) | ||||
rimN | tRNA threonylcarbamoyladenosine biosynthesis protein RimN; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Catalyzes the conversion of L-threonine, HCO(3)(-)/CO(2) and ATP to give threonylcarbamoyl-AMP (TC-AMP) as the acyladenylate intermediate, with the release of diphosphate. (187 aa) | ||||
gyrB | DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (810 aa) | ||||
zapB | Cell division protein ZapB; Non-essential, abundant cell division factor that is required for proper Z-ring formation. It is recruited early to the divisome by direct interaction with FtsZ, stimulating Z-ring assembly and thereby promoting cell division earlier in the cell cycle. Its recruitment to the Z-ring requires functional FtsA or ZipA. (72 aa) | ||||
gidA | tRNA uridine 5-carboxymethylaminomethyl modification protein; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family. (629 aa) | ||||
rsmG | 16S rRNA methyltransferase; Specifically methylates the N7 position of guanine in position 527 of 16S rRNA. (211 aa) | ||||
uspA | Universal stress protein A; Required for resistance to DNA-damaging agents. Belongs to the universal stress protein A family. (141 aa) | ||||
alaS | alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (874 aa) | ||||
csrA | Carbon storage regulator; A key translational regulator that binds mRNA to regulate translation initiation and/or mRNA stability. Mediates global changes in gene expression, shifting from rapid growth to stress survival by linking envelope stress, the stringent response and the catabolite repression systems. Usually binds in the 5'-UTR; binding at or near the Shine-Dalgarno sequence prevents ribosome-binding, repressing translation, binding elsewhere in the 5'-UTR can activate translation and/or stabilize the mRNA. Its function is antagonized by small RNA(s). (60 aa) | ||||
trmL | rRNA methylase; Methylates the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2'-OH of the wobble nucleotide. (153 aa) | ||||
gmhB | D,D-heptose 1,7-bisphosphate phosphatase; Derived by automated computational analysis using gene prediction method: Protein Homology. (184 aa) | ||||
xerC | Site-specific tyrosine recombinase XerC; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. (296 aa) | ||||
rraA | Regulator of ribonuclease activity A; Globally modulates RNA abundance by binding to RNase E (Rne) and regulating its endonucleolytic activity. Can modulate Rne action in a substrate-dependent manner by altering the composition of the degradosome. Modulates RNA-binding and helicase activities of the degradosome. (165 aa) | ||||
groEL | Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (547 aa) | ||||
groES | Molecular chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. (96 aa) | ||||
thyA | Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis. (283 aa) | ||||
pyrH | Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (238 aa) | ||||
frr | Hypothetical protein; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
fabZ | 3-hydroxyacyl-ACP dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs. (150 aa) | ||||
lpxA | UDP-N-acetylglucosamine acyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (262 aa) | ||||
rnhB | Ribonuclease HII; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. (196 aa) | ||||
leuS | leucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...] (860 aa) | ||||
rsmA | Ribosomal RNA small subunit methyltransferase A; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits. (286 aa) | ||||
purM | Phosphoribosylaminoimidazole synthetase; Catalyzes the formation of 1-(5-phosphoribosyl)-5-aminoimidazole from 2-(formamido)-N1-(5-phosphoribosyl)acetamidine and ATP in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology. (345 aa) | ||||
rnhA | Ribonuclease H; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. (153 aa) | ||||
coaE | dephospho-CoA kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (274 aa) | ||||
btr | AraC family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology. (298 aa) | ||||
rsmC | MFS transporter; Specifically methylates the guanine in position 1207 of 16S rRNA in the 30S particle; Belongs to the methyltransferase superfamily. RsmC family. (330 aa) | ||||
dapA | Dihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA). (298 aa) | ||||
lon | DNA-binding protein; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner. (804 aa) | ||||
tsf | Elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (281 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (529 aa) | ||||
argG | Argininosuccinate synthase; Catalyzes the formation of arginosuccinate from citrulline and aspartate in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the argininosuccinate synthase family. Type 2 subfamily. (446 aa) | ||||
cmk | Cytidylate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (224 aa) | ||||
prsA | Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily. (315 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (194 aa) | ||||
xseA | Exodeoxyribonuclease VII large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. (515 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (160 aa) | ||||
dnaJ | Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (381 aa) | ||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (154 aa) | ||||
fdhE | Formate dehydrogenase; Necessary for formate dehydrogenase activity. Belongs to the FdhE family. (301 aa) | ||||
fdhD | Formate dehydrogenase; Required for formate dehydrogenase (FDH) activity. Acts as a sulfur carrier protein that transfers sulfur from IscS to the molybdenum cofactor prior to its insertion into FDH. Belongs to the FdhD family. (286 aa) | ||||
acpP | Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis. (76 aa) | ||||
fabH | 3-oxoacyl-ACP synthase; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Its substrate specificity determines the biosynthesis of branched-chain and/or straight-chain of fatty acids; Belongs to the thiolase-like superfamily. FabH family. (316 aa) | ||||
plsX | Phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA. (344 aa) | ||||
bioD1_1 | ATP-dependent dethiobiotin synthetase BioD; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8- diaminopelargonic acid (DAPA) to form an ureido ring. (215 aa) | ||||
bioA | Adenosylmethionine-8-amino-7-oxononanoate aminotransferase; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. BioA subfamily. (429 aa) | ||||
gmk | Guanylate kinase; Essential for recycling GMP and indirectly, cGMP. (208 aa) | ||||
argD | Acetylornithine aminotransferase; DapATase; bifunctional enzyme that functions in arginine and lysine biosynthetic pathways; catalyzes the formation of N-acetyl-L-glutamate 5-semialdehyde from 2-oxoglutarate and N(2)-acetyl-L-ornithine or N-succinyl-2-L-amino-6-oxoheptanedioate from 2-oxoglutarate and N-succinyl-L-2,6-diaminoheptanedioate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily. (400 aa) | ||||
ppnK | Inorganic polyphosphate kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. (304 aa) | ||||
grpE | Molecular chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP [...] (197 aa) | ||||
tilS | tRNA(Ile)-lysidine synthetase; Ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. Belongs to the tRNA(Ile)-lysidine synthase family. (430 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (320 aa) | ||||
lysS | lysine--tRNA ligase; Class II; LysRS2; catalyzes a two-step reaction, first charging a lysine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; in Methanosarcina barkeri, LysRS2 charges both tRNA molecules for lysine that exist in this organism and in addition can charge the tRNAPyl with lysine in the presence of LysRS1; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. (501 aa) | ||||
metG | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (683 aa) | ||||
mnmC | FAD-dependent cmnm(5)s(2)U34 oxidoreductase; Catalyzes the last two steps in the biosynthesis of 5- methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position (U34) in tRNA. Catalyzes the FAD-dependent demodification of cmnm(5)s(2)U34 to nm(5)s(2)U34, followed by the transfer of a methyl group from S-adenosyl-L-methionine to nm(5)s(2)U34, to form mnm(5)s(2)U34; In the C-terminal section; belongs to the DAO family. (677 aa) | ||||
hflX | GTPase HflX; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. HflX GTPase family. (452 aa) | ||||
scrB | Fructosidase; Enables the bacterium to metabolize sucrose as a sole carbon source; Belongs to the glycosyl hydrolase 32 family. (483 aa) | ||||
tyrS | tyrosine--tRNA ligase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (399 aa) | ||||
trpR | Trp operon repressor; This protein is an aporepressor. When complexed with L- tryptophan it binds the operator region of the trp operon and prevents the initiation of transcription. (99 aa) | ||||
queA | S-adenosylmethionine tRNA ribosyltransferase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA). (363 aa) | ||||
thrB | Serine kinase; Catalyzes the ATP-dependent phosphorylation of L-homoserine to L-homoserine phosphate; Belongs to the GHMP kinase family. Homoserine kinase subfamily. (314 aa) | ||||
miaB | (dimethylallyl)adenosine tRNA methylthiotransferase; Catalyzes the methylthiolation of N6-(dimethylallyl)adenosine (i(6)A), leading to the formation of 2-methylthio-N6- (dimethylallyl)adenosine (ms(2)i(6)A) at position 37 in tRNAs that read codons beginning with uridine. (474 aa) | ||||
rnb | Exoribonuclease II; Involved in mRNA degradation. Hydrolyzes single-stranded polyribonucleotides processively in the 3' to 5' direction. (659 aa) | ||||
proQ | Prop expression regulator; RNA chaperone with significant RNA binding, RNA strand exchange and RNA duplexing activities; Belongs to the ProQ family. (202 aa) | ||||
ybaB | Hypothetical protein; Binds to DNA and alters its conformation. May be involved in regulation of gene expression, nucleoid organization and DNA protection. (109 aa) | ||||
rlmM | Ribosomal RNA large subunit methyltransferase M; Catalyzes the 2'-O-methylation at nucleotide C2498 in 23S rRNA; Belongs to the class I-like SAM-binding methyltransferase superfamily. RNA methyltransferase RlmE family. RlmM subfamily. (363 aa) | ||||
rsmI | Tetrapyrrole methylase; Catalyzes the 2'-O-methylation of the ribose of cytidine 1402 (C1402) in 16S rRNA. (280 aa) | ||||
dapD | 2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase; Catalyzes the formation of N-succinyl-2-amino-6-ketopimelate from succinyl-CoA and tetrahydrodipicolinate in the lysine biosynthetic pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transferase hexapeptide repeat family. (275 aa) | ||||
ftnA_1 | Ferritin; Iron-storage protein. (166 aa) | ||||
ftnA_2 | Ferritin; Iron-storage protein. (162 aa) | ||||
KKA98973.1 | Hypothetical protein; Required for morphogenesis under gluconeogenic growth conditions; Belongs to the gluconeogenesis factor family. (309 aa) | ||||
rrmJ | 23S rRNA methyltransferase; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2'-O position of the ribose in the fully assembled 50S ribosomal subunit. (209 aa) | ||||
kdsA | 2-dehydro-3-deoxyphosphooctonate aldolase; Catalyzes the formation of 2-dehydro-3-deoxy-D-octonate 8-phosphate from phosphoenolpyruvate and D-arabinose 5-phosphate in LPS biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the KdsA family. (284 aa) | ||||
metX | Homoserine acetyltransferase; Transfers an acetyl group from acetyl-CoA to L-homoserine, forming acetyl-L-homoserine. (363 aa) | ||||
rbsK | Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway. (308 aa) | ||||
PepT | Peptidase T; Cleaves the N-terminal amino acid of tripeptides. Belongs to the peptidase M20B family. (406 aa) | ||||
uvrB | Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...] (678 aa) | ||||
thrS | threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (643 aa) | ||||
dapB | Dihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family. (270 aa) | ||||
pepA_1 | Multifunctional aminopeptidase A; Presumably involved in the processing and regular turnover of intracellular proteins. Catalyzes the removal of unsubstituted N- terminal amino acids from various peptides. (494 aa) | ||||
KKA99056.1 | Phosphate acetyltransferase; Involved in acetate metabolism. In the N-terminal section; belongs to the CobB/CobQ family. (712 aa) | ||||
ackA | Acetate kinase; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction; Belongs to the acetokinase family. (400 aa) | ||||
tyrA | Prephenate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (374 aa) | ||||
xseB | Exodeoxyribonuclease VII small subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. (95 aa) | ||||
thiI | tRNA s(4)U8 sulfurtransferase; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS. (482 aa) | ||||
dksA | Molecular chaperone DnaK; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression. (145 aa) | ||||
argA | N-acetylglutamate synthase; Catalyzes the formation of N-acetyl-L-glutamate from L-glutamate and acetyl-CoA in arginine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the acetyltransferase family. ArgA subfamily. (437 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (429 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (360 aa) | ||||
orn | Oligoribonuclease; 3'-to-5' exoribonuclease specific for small oligoribonucleotides; Belongs to the oligoribonuclease family. (182 aa) | ||||
rsgA | GTPase RsgA; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Helps release RbfA from mature subunits. May play a role in the assembly of ribosomal proteins into the subunit. Circularly permuted GTPase that catalyzes slow GTP hydrolysis, GTPase activity is stimulated by the 30S ribosomal subunit; Belongs to the TRAFAC class YlqF/YawG GTPase family. RsgA subfamily. (352 aa) | ||||
ptsH | PTS sugar transporter; Derived by automated computational analysis using gene prediction method: Protein Homology. (85 aa) | ||||
ptsI | Phosphoenolpyruvate-protein phosphotransferase; General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr). (575 aa) | ||||
glnS | glutamate--tRNA ligase; Catalyzes a two-step reaction, first charging a glutamine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology. (552 aa) | ||||
dinB | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (357 aa) | ||||
queF | 7-cyano-7-deazaguanine reductase; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1). (280 aa) | ||||
mukB | Cell division protein MukB; Plays a central role in chromosome condensation, segregation and cell cycle progression. Functions as a homodimer, which is essential for chromosome partition. Involved in negative DNA supercoiling in vivo, and by this means organize and compact chromosomes. May achieve or facilitate chromosome segregation by condensation DNA from both sides of a centrally located replisome during cell division; Belongs to the SMC family. MukB subfamily. (1503 aa) | ||||
mukE | Condesin subunit E; Involved in chromosome condensation, segregation and cell cycle progression. May participate in facilitating chromosome segregation by condensation DNA from both sides of a centrally located replisome during cell division. Probably acts via its interaction with MukB and MukF. (238 aa) | ||||
mukF | Condesin subunit F; Involved in chromosome condensation, segregation and cell cycle progression. May participate in facilitating chromosome segregation by condensation DNA from both sides of a centrally located replisome during cell division. Not required for mini-F plasmid partitioning. Probably acts via its interaction with MukB and MukE. Overexpression results in anucleate cells. It has a calcium binding activity. (441 aa) | ||||
pheT | phenylalanine--tRNA ligase; Catalyzes a two-step reaction, first charging a phenylalanine molecule by linking its carboxyl group to the alpha-phosphate of ATP, followed by transfer of the aminoacyl-adenylate to its tRNA; forms a tetramer of alpha(2)beta(2); binds two magnesium ions per tetramer; type 2 subfamily; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (795 aa) | ||||
pheS | phenylalanyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (329 aa) | ||||
asnS | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (467 aa) | ||||
fabA | 3-hydroxydecanoyl-ACP dehydratase; Necessary for the introduction of cis unsaturation into fatty acids. Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to E- (2)-decenoyl-ACP and then its isomerization to Z-(3)-decenoyl-ACP. Can catalyze the dehydratase reaction for beta-hydroxyacyl-ACPs with saturated chain lengths up to 16:0, being most active on intermediate chain length. (176 aa) | ||||
matP | Ter macrodomain organizer matS-binding protein; Required for spatial organization of the terminus region of the chromosome (Ter macrodomain) during the cell cycle. Prevents early segregation of duplicated Ter macrodomains during cell division. Binds specifically to matS, which is a 13 bp signature motif repeated within the Ter macrodomain. (149 aa) | ||||
arcB | Ornithine carbamoyltransferase; Reversibly catalyzes the transfer of the carbamoyl group from carbamoyl phosphate (CP) to the N(epsilon) atom of ornithine (ORN) to produce L-citrulline; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. OTCase family. (334 aa) | ||||
accD | acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (299 aa) | ||||
argR | Arginine repressor; Regulates arginine biosynthesis genes. (155 aa) | ||||
rnd | Ribonuclease D; Exonuclease involved in the 3' processing of various precursor tRNAs. Initiates hydrolysis at the 3'-terminus of an RNA molecule and releases 5'-mononucleotides; Belongs to the RNase D family. (384 aa) | ||||
hemH | Ferrochelatase; Catalyzes the ferrous insertion into protoporphyrin IX. Belongs to the ferrochelatase family. (323 aa) | ||||
rbfA | Ribosome-binding factor A; One of several proteins that assist in the late maturation steps of the functional core of the 30S ribosomal subunit. Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Required for efficient processing of 16S rRNA. May interact with the 5'-terminal helix region of 16S rRNA. (131 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (839 aa) | ||||
nusA | Transcription elongation factor NusA; Participates in both transcription termination and antitermination. (499 aa) | ||||
rimP | Ribosome maturation protein RimP; Required for maturation of 30S ribosomal subunits. Belongs to the RimP family. (151 aa) | ||||
accA | acetyl-CoA carboxylase subunit alpha; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (317 aa) | ||||
uvrC | Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (610 aa) | ||||
kdsB | 3-deoxy-manno-octulosonate cytidylyltransferase; Activates KDO (a required 8-carbon sugar) for incorporation into bacterial lipopolysaccharide in Gram-negative bacteria. (260 aa) | ||||
KKA99277.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (246 aa) | ||||
aspS_1 | aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (592 aa) | ||||
pgi | Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family. (548 aa) | ||||
argS | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. (577 aa) | ||||
pepT_3 | Peptidase T; Cleaves the N-terminal amino acid of tripeptides. Belongs to the peptidase M20B family. (418 aa) | ||||
apt | Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (180 aa) | ||||
seqA | Replication initiation regulator SeqA; Negative regulator of replication initiation, which contributes to regulation of DNA replication and ensures that replication initiation occurs exactly once per chromosome per cell cycle. Binds to pairs of hemimethylated GATC sequences in the oriC region, thus preventing assembly of replication proteins and re- initiation at newly replicated origins. Repression is relieved when the region becomes fully methylated. (209 aa) | ||||
fur | Fur family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the Fur family. (148 aa) | ||||
gyrA | DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner. (883 aa) | ||||
valS | valine--tRNA ligase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (954 aa) | ||||
fumC | Fumarate hydratase; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (464 aa) | ||||
udk | Uridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (212 aa) | ||||
rhlB | RNA helicase; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily. (415 aa) | ||||
rsfS | Ribosome-associated protein IOJAP; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation. (103 aa) | ||||
rlmH | 50S rRNA methyltransferase; Specifically methylates the pseudouridine at position 1915 (m3Psi1915) in 23S rRNA; Belongs to the RNA methyltransferase RlmH family. (155 aa) | ||||
lipB | Lipoate--protein ligase; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. (217 aa) | ||||
lipA | Lipoyl synthase; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (320 aa) | ||||
dnaE | DNA polymerase III subunit alpha; Catalyzes DNA-template-directed extension of the 3'- end of a DNA strand by one nucleotide at a time; main replicative polymerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (1158 aa) | ||||
ybeY | Metal-binding heat shock protein; Single strand-specific metallo-endoribonuclease involved in late-stage 70S ribosome quality control and in maturation of the 3' terminus of the 16S rRNA. (155 aa) | ||||
tmcA | Hypothetical protein; Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of tRNA(Met), by using acetyl-CoA as an acetyl donor and ATP (or GTP). (646 aa) | ||||
mraZ | Cell division protein MraZ; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the MraZ family. (152 aa) | ||||
rsmH | 16S rRNA methyltransferase; Specifically methylates the N4 position of cytidine in position 1402 (C1402) of 16S rRNA. (321 aa) | ||||
murE | UDP-N-acetylmuramoylalanyl-D-glutamate--2, 6-diaminopimelate ligase; Catalyzes the addition of meso-diaminopimelic acid to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanyl-D-glutamate (UMAG) in the biosynthesis of bacterial cell-wall peptidoglycan. Belongs to the MurCDEF family. MurE subfamily. (491 aa) | ||||
murF | UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D- alanine ligase; Involved in cell wall formation. Catalyzes the final step in the synthesis of UDP-N-acetylmuramoyl-pentapeptide, the precursor of murein; Belongs to the MurCDEF family. MurF subfamily. (464 aa) | ||||
murD | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Cell wall formation. Catalyzes the addition of glutamate to the nucleotide precursor UDP-N-acetylmuramoyl-L-alanine (UMA). Belongs to the MurCDEF family. (440 aa) | ||||
murC | UDP-N-acetylmuramate--alanine ligase; Cell wall formation; Belongs to the MurCDEF family. (476 aa) | ||||
ddl | D-alanine--D-alanine ligase; Cell wall formation; Belongs to the D-alanine--D-alanine ligase family. (308 aa) | ||||
ftsZ | Cell division protein FtsZ; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (435 aa) | ||||
xerD_2 | Tyrosine recombinase XerD; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. The XerC- XerD complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. (297 aa) | ||||
proC | Pyrroline-5-carboxylate reductase; Catalyzes the reduction of 1-pyrroline-5-carboxylate (PCA) to L-proline. (272 aa) | ||||
rdgC | Recombinase RdgC; May be involved in recombination; Belongs to the RdgC family. (301 aa) | ||||
efp | Elongation factor P; Involved in peptide bond synthesis. Alleviates ribosome stalling that occurs when 3 or more consecutive Pro residues or the sequence PPG is present in a protein, possibly by augmenting the peptidyl transferase activity of the ribosome. Modification of Lys-34 is required for alleviation; Belongs to the elongation factor P family. (188 aa) | ||||
purA | Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa) | ||||
proA | Gamma-glutamyl phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family. (419 aa) | ||||
dat1 | Cysteine methyltransferase; Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) and O4-methylthymine (O4-MeT) in DNA. Repairs the methylated nucleobase in DNA by stoichiometrically transferring the methyl group to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated. (179 aa) | ||||
mutH | DNA mismatch repair protein MutH; Sequence-specific endonuclease that cleaves unmethylated GATC sequences. It is involved in DNA mismatch repair. Belongs to the MutH family. (222 aa) | ||||
fadR | Fatty acid metabolism regulator protein; Multifunctional regulator of fatty acid metabolism. (241 aa) | ||||
adk | Adenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (214 aa) | ||||
serC | MFS transporter; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (360 aa) | ||||
aroA | 3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate. (430 aa) | ||||
murA | UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (424 aa) | ||||
fbp | Catalyzes the formation of D-fructose 6-phosphate from fructose-1,6-bisphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FBPase class 1 family. (333 aa) | ||||
cspE | Cold-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (69 aa) | ||||
hemL | Glutamate-1-semialdehyde aminotransferase; Converts (S)-4-amino-5-oxopentanoate to 5-aminolevulinate during the porphyrin biosynthesis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology. (429 aa) | ||||
hflD | Lysogenization regulator; HflD; UPF0274; in Escherichia coli this protein is peripherally associated with the membrane and appears to act with lambda CII protein; in Haemophilus influenzae a knockout of the HI0638 gene affected paracytosis; Derived by automated computational analysis using gene prediction method: Protein Homology. (203 aa) | ||||
rsmE | 16S rRNA methyltransferase; Specifically methylates the N3 position of the uracil ring of uridine 1498 (m3U1498) in 16S rRNA. Acts on the fully assembled 30S ribosomal subunit. (244 aa) | ||||
yqgF | Holliday junction resolvase; Could be a nuclease involved in processing of the 5'-end of pre-16S rRNA; Belongs to the YqgF HJR family. (137 aa) | ||||
obgE | GTPase CgtA; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control. Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family. (390 aa) | ||||
rlmB | 23S rRNA methyltransferase; Specifically methylates the ribose of guanosine 2251 in 23S rRNA. (246 aa) | ||||
rnr | Exoribonuclease R; 3'-5' exoribonuclease that releases 5'-nucleoside monophosphates and is involved in maturation of structured RNAs. (800 aa) | ||||
era | GTPase Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism. (303 aa) | ||||
rnc | Double-stranded RNA-binding protein; Digests double-stranded RNA. Involved in the processing of primary rRNA transcript to yield the immediate precursors to the large and small rRNAs (23S and 16S). Processes some mRNAs, and tRNAs when they are encoded in the rRNA operon. Processes pre-crRNA and tracrRNA of type II CRISPR loci if present in the organism. (227 aa) | ||||
ung | uracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine. (222 aa) | ||||
pfkA | 6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (321 aa) | ||||
ndk | Nucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (140 aa) | ||||
pepB | Aminopeptidase B; Probably plays an important role in intracellular peptide degradation. (435 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
hemN_1 | Coproporphyrinogen III oxidase; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family. (384 aa) | ||||
surE | Stationary phase survival protein SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (246 aa) | ||||
ppa | Inorganic pyrophosphatase; Catalyzes the hydrolysis of inorganic pyrophosphate (PPi) forming two phosphate ions. (175 aa) | ||||
hisG | ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity. Belongs to the ATP phosphoribosyltransferase family. Long subfamily. (299 aa) | ||||
hisB | Imidazoleglycerol-phosphate dehydratase; Catalyzes the formation of 3-(imidazol-4-yl)-2-oxopropyl phosphate from D-ethythro-1-(imidazol-4-yl)glycerol 3-phosphate and histidinol from histidinol phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the histidinol- phosphatase family. (364 aa) | ||||
hisH | Imidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF. (197 aa) | ||||
hisA | 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology. (249 aa) | ||||
hisF | Imidazole glycerol phosphate synthase; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit. (259 aa) | ||||
hisE | phosphoribosyl-ATP pyrophosphatase; Catalyzes the formation of 1-(5-phosphoribosyl)-AMP from 1-(5-phosphoribosyl)-ATP and the subsequent formation of 1-(5-phosphoribosyl)-5-((5- phosphoribosylamino)methylideneamino)imidazole-4- carboxamide from 1-(5-phosphoribosyl)-AMP in histidine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; In the N-terminal section; belongs to the PRA-CH family. (203 aa) | ||||
ubiC | 4-hydroxybenzoate synthetase; Removes the pyruvyl group from chorismate, with concomitant aromatization of the ring, to provide 4-hydroxybenzoate (4HB) for the ubiquinone pathway; Belongs to the UbiC family. (171 aa) | ||||
leuB | 3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. (358 aa) | ||||
pflA | Pyruvate formate lyase-activating enzyme 1; Activation of pyruvate formate-lyase under anaerobic conditions by generation of an organic free radical, using S- adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine; Belongs to the organic radical-activating enzymes family. (246 aa) | ||||
nagZ | Beta-hexosaminidase; Plays a role in peptidoglycan recycling by cleaving the terminal beta-1,4-linked N-acetylglucosamine (GlcNAc) from peptide- linked peptidoglycan fragments, giving rise to free GlcNAc, anhydro-N- acetylmuramic acid and anhydro-N-acetylmuramic acid-linked peptides. Belongs to the glycosyl hydrolase 3 family. NagZ subfamily. (348 aa) | ||||
htpG | Heat shock protein 90; Molecular chaperone. Has ATPase activity. (627 aa) | ||||
sprT | sprT; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the SprT family. (168 aa) | ||||
deoB | Phosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (412 aa) | ||||
eno | Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (433 aa) | ||||
cutC | Copper homeostasis protein CutC; Participates in the control of copper homeostasis. Belongs to the CutC family. (242 aa) | ||||
glpE | Thiosulfate sulfurtransferase; Catalyzes, although with low efficiency, the sulfur transfer reaction from thiosulfate to cyanide. (111 aa) | ||||
hslV | Peptidase; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. (174 aa) | ||||
hslU | ATP-dependent protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis. (443 aa) | ||||
rimI | Alanine acetyltransferase; Acetylates the N-terminal alanine of ribosomal protein S18. (147 aa) | ||||
clpP | Clp protease ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (196 aa) | ||||
tig | Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily. (432 aa) | ||||
ffh | Signal recognition particle; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components; Belo [...] (461 aa) | ||||
trmE | tRNA modification GTPase TrmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. TrmE GTPase family. (452 aa) | ||||
glnA | Forms a homododecamer; forms glutamine from ammonia and glutamate with the conversion of ATP to ADP and phosphate; also functions in the assimilation of ammonia; highly regulated protein controlled by the addition/removal of adenylyl groups by adenylyltransferase from specific tyrosine residues; addition of adenylyl groups results in inactivation of the enzyme; Derived by automated computational analysis using gene prediction method: Protein Homology. (471 aa) | ||||
hpt | Catalyzes the formation of inosine monophosphate from hypoxanthine and 5-phospho-alpha-D-ribose 1-diphosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (179 aa) | ||||
rdgC_2 | Recombinase RdgC; May be involved in recombination. Belongs to the RdgC family. (298 aa) | ||||
zapA | Cell division protein ZapA; Activator of cell division through the inhibition of FtsZ GTPase activity, therefore promoting FtsZ assembly into bundles of protofilaments necessary for the formation of the division Z ring. It is recruited early at mid-cell but it is not essential for cell division. (100 aa) | ||||
slmA | Division inhibitor protein; Required for nucleoid occlusion (NO) phenomenon, which prevents Z-ring formation and cell division over the nucleoid. Acts as a DNA-associated cell division inhibitor that binds simultaneously chromosomal DNA and FtsZ, and disrupts the assembly of FtsZ polymers. SlmA-DNA-binding sequences (SBS) are dispersed on non-Ter regions of the chromosome, preventing FtsZ polymerization at these regions. (211 aa) | ||||
nanA | N-acetylneuraminate lyase; Catalyzes the reversible aldol cleavage of N-acetylneuraminic acid (sialic acid; Neu5Ac) to form pyruvate and N-acetylmannosamine (ManNAc) via a Schiff base intermediate. (292 aa) | ||||
cysS | cysteine--tRNA ligase; Catalyzes a two-step reaction; charges a cysteine by linking its carboxyl group to the alpha-phosphate of ATP then transfers the aminoacyl-adenylate to its tRNA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family. (459 aa) | ||||
uvrA | Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (942 aa) | ||||
dlgD | 2,3-diketo-L-gulonate reductase; Catalyzes the reduction of 2,3-diketo-L-gulonate in the presence of NADH, to form 3-keto-L-gulonate. (332 aa) | ||||
dtd | D-tyrosyl-tRNA(Tyr) deacylase; An aminoacyl-tRNA editing enzyme that deacylates mischarged D-aminoacyl-tRNAs. Also deacylates mischarged glycyl-tRNA(Ala), protecting cells against glycine mischarging by AlaRS. Acts via tRNA- based rather than protein-based catalysis; rejects L-amino acids rather than detecting D-amino acids in the active site. By recycling D- aminoacyl-tRNA to D-amino acids and free tRNA molecules, this enzyme counteracts the toxicity associated with the formation of D-aminoacyl- tRNA entities in vivo and helps enforce protein L-homochirality. Belongs to the DTD family. (144 aa) | ||||
selA | Selenocysteine synthase; Converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis. (461 aa) | ||||
rne | Ribonuclease E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs. Belongs to the RNase E/G family. RNase E subfamily. (936 aa) | ||||
dapF | Diaminopimelate epimerase; Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L- lysine and an essential component of the bacterial peptidoglycan. (274 aa) | ||||
clpB | Protein disaggregation chaperone; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (857 aa) | ||||
prmA | Ribosomal protein L11 methyltransferase; Methylates ribosomal protein L11; Belongs to the methyltransferase superfamily. PrmA family. (295 aa) |