Your Input: | |||||
psbX | Hypothetical protein; Involved in the binding and/or turnover of quinones at the Q(B) site of Photosystem II. (61 aa) | ||||
ycf3 | TPR repeat; Essential for the assembly of the photosystem I (PSI) complex. May act as a chaperone-like factor to guide the assembly of the PSI subunits; Belongs to the Ycf3 family. (173 aa) | ||||
psbA1 | Photosystem q(b) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (360 aa) | ||||
ABB49292.1 | Photosystem II manganese-stabilizing protein; Alternative locus ID: P9312_02391. (264 aa) | ||||
psbH | Photosystem II PsbH protein; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (66 aa) | ||||
psbI | Photosystem II reaction center PsbI protein; One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light- driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (42 aa) | ||||
psbK | Photosystem II protein PsbK; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (46 aa) | ||||
psbE | Cytochrome b559, alpha subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (84 aa) | ||||
psbF | Cytochrome b559, beta subunit; This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. Belongs to the PsbE/PsbF family. (48 aa) | ||||
psbL | Photosystem II PsbL protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. (39 aa) | ||||
psbJ | Photosytem II PsbJ protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. (65 aa) | ||||
psbT | Photosystem II PsbT protein; Seems to play a role in the dimerization of PSII. Belongs to the PsbT family. (32 aa) | ||||
psbB | Photosystem II PsbB protein (CP47); One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbB subfamily. (507 aa) | ||||
psbM | Photosystem II reaction center M protein (PsbM)-like protein; One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. (50 aa) | ||||
petB | Cytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (218 aa) | ||||
petD | petD protein (subunit IV of the Cytochrome b6f complex); Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (160 aa) | ||||
psaE | Photosystem I PsaE protein (subunit IV); Stabilizes the interaction between PsaC and the PSI core, assists the docking of the ferredoxin to PSI and interacts with ferredoxin-NADP oxidoreductase; Belongs to the PsaE family. (69 aa) | ||||
petA | Cytochrome F; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (317 aa) | ||||
petC | Twin-arginine translocation pathway signal; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. Belongs to the Rieske iron-sulfur protein family. (178 aa) | ||||
psaJ | Photosystem I PsaJ protein (subunit IX); May help in the organization of the PsaE and PsaF subunits. Belongs to the PsaJ family. (44 aa) | ||||
ABB49530.1 | Photosystem I PsaF protein (subunit III); Alternative locus ID: P9312_04941. (184 aa) | ||||
ABB49688.1 | Light-harvesting complex protein; Alternative locus ID: P9312_06541. (352 aa) | ||||
petN | Cytochrome b6-f complex subunit VIII; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (33 aa) | ||||
ABB49954.1 | Photosystem I PsaK protein (subunit X); Alternative locus ID: P9312_09521. (86 aa) | ||||
petG | Cytochrome b6/f complex, subunit V; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex. (70 aa) | ||||
ABB50203.1 | Photosystem q(b) protein; Alternative locus ID: P9312_12341. (360 aa) | ||||
ABB50235.1 | PsbF protein-like protein; Unknown. Resembles PsbF, one of the subunits of the photosystem II reaction center. However, it encodes asparagine rather than histidine at the site PsbF uses to bind heme; Belongs to the PsbE/PsbF family. (98 aa) | ||||
petM | Cytochrome b6-F complex subunit VII; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. (36 aa) | ||||
ycf4 | Photosystem I assembly related protein Ycf4; Seems to be required for the assembly of the photosystem I complex; Belongs to the Ycf4 family. (185 aa) | ||||
psbD | Photosystem II D2 protein (photosystem q(a) protein); Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a s [...] (358 aa) | ||||
psbC | Photosystem II 44 kDa subunit reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (460 aa) | ||||
ABB50330.1 | Chlorophyll a/b binding light harvesting protein PcbD; Alternative locus ID: P9312_13891. (352 aa) | ||||
psaL | Photosystem I PsaL protein (subunit XI); Alternative locus ID: P9312_17611. (196 aa) | ||||
psaB | Photosystem I core protein PsaB; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6. (742 aa) | ||||
psaA | Photosystem I core protein PsaA; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6. (767 aa) | ||||
ABB50731.1 | Photosystem I protein PsaD; Alternative locus ID: P9312_18211. (140 aa) | ||||
psaC | Photosystem I subunit PsaC; Apoprotein for the two 4Fe-4S centers FA and FB of photosystem I (PSI); essential for photochemical activity. FB is the terminal electron acceptor of PSI, donating electrons to ferredoxin. The C-terminus interacts with PsaA/B/D and helps assemble the protein into the PSI complex. Required for binding of PsaD and PsaE to PSI. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, [...] (81 aa) | ||||
ABB50797.1 | Putative photosystem II PsbZ protein; Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. (65 aa) |