STRINGSTRING
ALO47787.1 ALO47787.1 ALO47958.1 ALO47958.1 surE surE ALO48019.1 ALO48019.1 purA purA purD purD purN purN ALO48418.1 ALO48418.1 guaA guaA ALO49869.1 ALO49869.1 purC purC glyA glyA ALO49173.1 ALO49173.1 xpt xpt ALO49202.1 ALO49202.1 folD folD ALO49376.1 ALO49376.1 guaB guaB purL purL gmk gmk purE purE fhs fhs apt apt
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ALO47787.1Formiminotransferase-cyclodeaminase; Derived by automated computational analysis using gene prediction method: Protein Homology. (567 aa)
ALO47958.1IMP cyclohydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (197 aa)
surEStationary phase survival protein SurE; Nucleotidase that shows phosphatase activity on nucleoside 5'-monophosphates; Belongs to the SurE nucleotidase family. (258 aa)
ALO48019.1Hypoxanthine phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the purine/pyrimidine phosphoribosyltransferase family. (177 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (424 aa)
purDPhosphoribosylamine--glycine ligase; Catalyzes the formation of N(1)-(5-phospho-D-ribosyl)glycinamide from 5-phospho-D-ribosylamine and glycine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GARS family. (422 aa)
purNPhosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (189 aa)
ALO48418.1Amidophosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (631 aa)
guaAGMP synthetase; Catalyzes the synthesis of GMP from XMP. (514 aa)
ALO49869.1Phosphoribosylformylglycinamidine cyclo-ligase; Derived by automated computational analysis using gene prediction method: Protein Homology. (387 aa)
purCPhosphoribosylaminoimidazolesuccinocarboxamide synthase; Catalyzes the formation of (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4- carboxamido)succinate from 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate and L-aspartate in purine biosynthesis; SAICAR synthase; Derived by automated computational analysis using gene prediction method: Protein Homology. (315 aa)
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (426 aa)
ALO49173.1Xanthine permease XanP; High-affinity transporter for xanthine; Derived by automated computational analysis using gene prediction method: Protein Homology. (441 aa)
xptXanthine phosphoribosyltransferase; Converts the preformed base xanthine, a product of nucleic acid breakdown, to xanthosine 5'-monophosphate (XMP), so it can be reused for RNA or DNA synthesis. (188 aa)
ALO49202.15-aminoimidazole-4-carboxamide ribonucleotide transformylase; Catalyzes the formylation of AICAR with 10-formyl-tetrahydrofolate to yield FAICAR and tetrahydrofolate; Derived by automated computational analysis using gene prediction method: Protein Homology. (393 aa)
folDMethenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate. (292 aa)
ALO49376.1Adenylosuccinate lyase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (448 aa)
guaBInosine-5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (494 aa)
purLPhosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1240 aa)
gmkGuanylate kinase; Essential for recycling GMP and indirectly, cGMP. (206 aa)
purEPhosphoribosylaminoimidazole carboxylase; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (168 aa)
fhsFormate--tetrahydrofolate ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the formate--tetrahydrofolate ligase family. (555 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (176 aa)
Your Current Organism:
Prevotella enoeca
NCBI taxonomy Id: 76123
Other names: ATCC 51261, CIP 104472, JCM 12259, NCTC 13068, P. enoeca, VPI D194A-25A
Server load: low (20%) [HD]