STRINGSTRING
AGL01426.1 AGL01426.1 AGL01427.1 AGL01427.1 AGL01428.1 AGL01428.1 AGL01570.1 AGL01570.1 AGL01571.1 AGL01571.1 AGL01572.1 AGL01572.1 nuoN nuoN AGL02131.1 AGL02131.1 AGL02132.1 AGL02132.1 nuoK nuoK AGL02134.1 AGL02134.1 AGL02135.1 AGL02135.1 nuoH nuoH nuoD nuoD AGL02138.1 AGL02138.1 nuoB nuoB nuoA nuoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
AGL01426.1PFAM: Respiratory-chain NADH dehydrogenase 24 Kd subunit. (150 aa)
AGL01427.1NADH:ubiquinone oxidoreductase, NADH-binding (51 kD) subunit; PFAM: NADH-ubiquinone oxidoreductase-F iron-sulfur binding region; Respiratory-chain NADH dehydrogenase 24 Kd subunit; Respiratory-chain NADH dehydrogenase 51 Kd subunit; SLBB domain. (564 aa)
AGL01428.1NADH:ubiquinone oxidoreductase chain G-like protein; PFAM: 2Fe-2S iron-sulfur cluster binding domain. (204 aa)
AGL01570.1NADH:ubiquinone oxidoreductase chain G-like protein; PFAM: 2Fe-2S iron-sulfur cluster binding domain; NADH-ubiquinone oxidoreductase-G iron-sulfur binding region; 4Fe-4S binding domain; Molybdopterin oxidoreductase Fe4S4 domain. (306 aa)
AGL01571.1NADH:ubiquinone oxidoreductase, NADH-binding (51 kD) subunit; PFAM: NADH-ubiquinone oxidoreductase-F iron-sulfur binding region; 4Fe-4S binding domain; Respiratory-chain NADH dehydrogenase 24 Kd subunit; Respiratory-chain NADH dehydrogenase 51 Kd subunit; SLBB domain. (650 aa)
AGL01572.1PFAM: Respiratory-chain NADH dehydrogenase 24 Kd subunit; TIGRFAM: NADH-quinone oxidoreductase, E subunit. (161 aa)
nuoNProton-translocating NADH-quinone oxidoreductase, chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (484 aa)
AGL02131.1PFAM: NADH-Ubiquinone/plastoquinone (complex I), various chains; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain M. (506 aa)
AGL02132.1Proton-translocating NADH-quinone oxidoreductase, chain L; PFAM: NADH-Ubiquinone oxidoreductase (complex I), chain 5 C-terminus; NADH-Ubiquinone oxidoreductase (complex I), chain 5 N-terminus; NADH-Ubiquinone/plastoquinone (complex I), various chains; TIGRFAM: proton-translocating NADH-quinone oxidoreductase, chain L. (644 aa)
nuoKNADH:ubiquinone oxidoreductase subunit 11 or 4L (chain K); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (104 aa)
AGL02134.1NADH:ubiquinone oxidoreductase subunit 6 (chain J); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (184 aa)
AGL02135.1NADH:ubiquinone oxidoreductase chain I-like protein; PFAM: 4Fe-4S binding domain; TIGRFAM: NADH-quinone oxidoreductase, chain I. (176 aa)
nuoHNADH:ubiquinone oxidoreductase subunit 1 (chain H); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (348 aa)
nuoDNADH:ubiquinone oxidoreductase 49 kD subunit 7; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (367 aa)
AGL02138.1NADH/F420H2 dehydrogenase, subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 30 kDa subunit family. (148 aa)
nuoBNADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (196 aa)
nuoANADH:ubiquinone oxidoreductase subunit 3 (chain A); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (117 aa)
Your Current Organism:
Desulfallas gibsoniae
NCBI taxonomy Id: 767817
Other names: D. gibsoniae DSM 7213, Desulfallas gibsoniae DSM 7213, Desulfotomaculum gibsoniae DSM 7213, Desulfotomaculum sp. DSM 7213, Desulfotomaculum sp. Groll
Server load: low (18%) [HD]