STRINGSTRING
atpH atpH atpF atpF atpA atpA atpG atpG atpD atpD atpC atpC atpE atpE atpB atpB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpHATP synthase delta chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (272 aa)
atpFATP synthase B chain; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (185 aa)
atpAATP synthase alpha chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (544 aa)
atpGATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (325 aa)
atpDATP synthase beta chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (482 aa)
atpCATP synthase epsilon chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. (125 aa)
atpEATP synthase C chain; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (83 aa)
atpBATP synthase A chain; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (227 aa)
Your Current Organism:
Corynebacterium variabile
NCBI taxonomy Id: 858619
Other names: C. variabile DSM 44702, Corynebacterium variabile CIP 107183, Corynebacterium variabile DSM 44702, Corynebacterium variabile LMG S-19265, Corynebacterium variabile str. DSM 44702, Corynebacterium variabile strain DSM 44702
Server load: low (24%) [HD]