Your Input: | |||||
rpmH | PFAM: Ribosomal protein L34; TIGRFAM: ribosomal protein L34, bacterial type; IMG reference gene:2509566933_SP; Belongs to the bacterial ribosomal protein bL34 family. (44 aa) | ||||
rpsF | Ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (95 aa) | ||||
rpsR | Ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family. (94 aa) | ||||
rplI | Ribosomal protein L9; Binds to the 23S rRNA. (147 aa) | ||||
infC-2 | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (171 aa) | ||||
asnS | PFAM: tRNA synthetases class II (D, K and N); OB-fold nucleic acid binding domain; TIGRFAM: asparaginyl-tRNA synthetase. (463 aa) | ||||
pth | peptidyl-tRNA hydrolase; The natural substrate for this enzyme may be peptidyl-tRNAs which drop off the ribosome during protein synthesis. Belongs to the PTH family. (187 aa) | ||||
AGK99270.1 | Putative RNA-binding protein with ribosomal protein S1 domain; PFAM: S1 RNA binding domain. (135 aa) | ||||
lysS | lysyl-tRNA synthetase (class II); PFAM: tRNA synthetases class II (D, K and N); OB-fold nucleic acid binding domain; TIGRFAM: lysyl-tRNA synthetase, eukaryotic and non-spirochete bacterial; Belongs to the class-II aminoacyl-tRNA synthetase family. (512 aa) | ||||
glyQS | glycyl-tRNA synthetase, dimeric type; Catalyzes the attachment of glycine to tRNA(Gly). Belongs to the class-II aminoacyl-tRNA synthetase family. (463 aa) | ||||
cysS | PFAM: tRNA synthetases class I (C) catalytic domain; DALR domain; TIGRFAM: cysteinyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family. (465 aa) | ||||
AGK99238.1 | PFAM: Elongation factor Tu domain 2; Elongation factor Tu C-terminal domain; Elongation factor Tu GTP binding domain; TIGRFAM: small GTP-binding protein domain; translation elongation factor TU. (397 aa) | ||||
rpmG | PFAM: Ribosomal protein L33; TIGRFAM: ribosomal protein L33, bacterial type; Belongs to the bacterial ribosomal protein bL33 family. (49 aa) | ||||
rplK | 50S ribosomal protein L11; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. (141 aa) | ||||
rplA | Ribosomal protein L1; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release. (229 aa) | ||||
rplJ | Ribosomal protein L10; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors. Belongs to the universal ribosomal protein uL10 family. (170 aa) | ||||
rplL | Ribosomal protein L7/L12; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family. (122 aa) | ||||
AGK99228.1 | PFAM: Ribosomal protein L7Ae/L30e/S12e/Gadd45 family. (79 aa) | ||||
rpsL | Ribosomal protein S12, bacterial/organelle; Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit. (125 aa) | ||||
rpsG | Ribosomal protein S7, bacterial/organelle; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa) | ||||
fusA | Translation elongation factor EF-G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF- [...] (687 aa) | ||||
tuf | Translation elongation factor TU; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis. (397 aa) | ||||
rpsJ | Ribosomal protein S10, bacterial/organelle; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family. (102 aa) | ||||
rplC | 50S ribosomal protein L3, bacterial; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family. (209 aa) | ||||
rplD | 50S ribosomal protein L4, bacterial/organelle; Forms part of the polypeptide exit tunnel. (206 aa) | ||||
rplW | Ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family. (98 aa) | ||||
rplB | Ribosomal protein L2, bacterial/organellar; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family. (277 aa) | ||||
rpsS | Ribosomal protein S19, bacterial/organelle; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (94 aa) | ||||
rplV | Ribosomal protein L22, bacterial type; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome. (111 aa) | ||||
rpsC | Ribosomal protein S3, bacterial type; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation; Belongs to the universal ribosomal protein uS3 family. (222 aa) | ||||
rplP | Ribosomal protein L16, bacterial/organelle; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family. (147 aa) | ||||
rpmC | PFAM: Ribosomal L29 protein; TIGRFAM: ribosomal protein L29; Belongs to the universal ribosomal protein uL29 family. (67 aa) | ||||
rpsQ | 30S ribosomal protein S17; One of the primary rRNA binding proteins, it binds specifically to the 5'-end of 16S ribosomal RNA. (84 aa) | ||||
rplN | Ribosomal protein L14, bacterial/organelle; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (122 aa) | ||||
rplX | Ribosomal protein L24, bacterial/organelle; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit. (107 aa) | ||||
rplE | Ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. (180 aa) | ||||
rpsZ | Ribosomal protein S14; Binds 16S rRNA, required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site. (61 aa) | ||||
rpsH | Ribosomal protein S8; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (132 aa) | ||||
rplF | Ribosomal protein L6, bacterial type; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center; Belongs to the universal ribosomal protein uL6 family. (179 aa) | ||||
rplR | Ribosomal protein L18, bacterial type; This is one of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. (120 aa) | ||||
rpsE | Ribosomal protein S5, bacterial/organelle type; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family. (165 aa) | ||||
rpmD | PFAM: Ribosomal protein L30p/L7e; TIGRFAM: ribosomal protein L30, bacterial/organelle. (59 aa) | ||||
rplO | Ribosomal protein L15, bacterial/organelle; Binds to the 23S rRNA; Belongs to the universal ribosomal protein uL15 family. (146 aa) | ||||
AGK99199.1 | Hypothetical protein. (92 aa) | ||||
infA | Translation initiation factor IF-1; One of the essential components for the initiation of protein synthesis. Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initiation complex. (72 aa) | ||||
rpmJ | PFAM: Ribosomal protein L36; TIGRFAM: ribosomal protein L36, bacterial type; Belongs to the bacterial ribosomal protein bL36 family. (37 aa) | ||||
rpsM | 30S ribosomal protein S13; Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the 2 subunits; these bridges are implicated in subunit movement. Contacts the tRNAs in the A and P-sites. Belongs to the universal ribosomal protein uS13 family. (123 aa) | ||||
rpsK | 30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family. (131 aa) | ||||
rpsD | Ribosomal protein S4, bacterial/organelle type; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa) | ||||
rplQ | PFAM: Ribosomal protein L17; TIGRFAM: ribosomal protein L17. (113 aa) | ||||
rplM | Ribosomal protein L13, bacterial type; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly. (144 aa) | ||||
rpsI | PFAM: Ribosomal protein S9/S16; Belongs to the universal ribosomal protein uS9 family. (130 aa) | ||||
prfB | Peptide chain release factor 2; Peptide chain release factor 2 directs the termination of translation in response to the peptide chain termination codons UGA and UAA. (371 aa) | ||||
AGK99029.1 | PFAM: Sigma-70, region 4; Sigma-70 region 2; TIGRFAM: RNA polymerase sigma factor, sigma-70 family. (182 aa) | ||||
greA | Transcription elongation factor GreA; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3'terminus. GreA releases sequences of 2 to 3 nucleotides. (154 aa) | ||||
rplY-2 | Ribosomal protein L25, Ctc-form; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (198 aa) | ||||
smpB | SsrA-binding protein; Required for rescue of stalled ribosomes mediated by trans- translation. Binds to transfer-messenger RNA (tmRNA), required for stable association of tmRNA with ribosomes. tmRNA and SmpB together mimic tRNA shape, replacing the anticodon stem-loop with SmpB. tmRNA is encoded by the ssrA gene; the 2 termini fold to resemble tRNA(Ala) and it encodes a 'tag peptide', a short internal open reading frame. During trans-translation Ala-aminoacylated tmRNA acts like a tRNA, entering the A-site of stalled ribosomes, displacing the stalled mRNA. The ribosome then switches to [...] (157 aa) | ||||
proS | prolyl-tRNA synthetase, family I; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). (479 aa) | ||||
gltX | glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu). (488 aa) | ||||
AGK98068.1 | ybaK/ebsC protein; PFAM: YbaK / prolyl-tRNA synthetases associated domain; TIGRFAM: ybaK/ebsC protein; Belongs to the prolyl-tRNA editing family. YbaK/EbsC subfamily. (159 aa) | ||||
argS | arginyl-tRNA synthetase; PFAM: DALR anticodon binding domain; Arginyl tRNA synthetase N terminal domain; tRNA synthetases class I (R); TIGRFAM: arginyl-tRNA synthetase. (563 aa) | ||||
valS | valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily. (883 aa) | ||||
thrS | threonyl-tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). (637 aa) | ||||
infC | Translation initiation factor IF-3; IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. (179 aa) | ||||
rpmI | PFAM: Ribosomal protein L35; TIGRFAM: ribosomal protein L35; Belongs to the bacterial ribosomal protein bL35 family. (65 aa) | ||||
rplT | Ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit. (118 aa) | ||||
pheS | phenylalanyl-tRNA synthetase, alpha subunit; PFAM: tRNA synthetases class II core domain (F); Aminoacyl tRNA synthetase class II, N-terminal domain; TIGRFAM: phenylalanyl-tRNA synthetase, alpha subunit; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. (339 aa) | ||||
pheT | phenylalanyl-tRNA synthetase, beta subunit; PFAM: tRNA synthetase B5 domain; Ferredoxin-fold anticodon binding domain; B3/4 domain; Putative tRNA binding domain; TIGRFAM: phenylalanyl-tRNA synthetase, beta subunit, non-spirochete bacterial; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily. (796 aa) | ||||
rplY | Ribosomal protein L25, Ctc-form; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily. (207 aa) | ||||
AGK97717.1 | Putative RNA-binding protein, snRNP like protein; PFAM: Domain of unknown function (DUF814); Fibronectin-binding protein A N-terminus (FbpA). (576 aa) | ||||
efp | Translation elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase. (186 aa) | ||||
rpsO | Ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome. (87 aa) | ||||
infB | Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily. (696 aa) | ||||
frr | Ribosome recycling factor; Responsible for the release of ribosomes from messenger RNA at the termination of protein biosynthesis. May increase the efficiency of translation by recycling ribosomes from one round of translation to another; Belongs to the RRF family. (185 aa) | ||||
tsf | Translation elongation factor Ts; Associates with the EF-Tu.GDP complex and induces the exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF- Tu.GTP complex up to the GTP hydrolysis stage on the ribosome. Belongs to the EF-Ts family. (307 aa) | ||||
rpsB | PFAM: Ribosomal protein S2; TIGRFAM: ribosomal protein S2, bacterial type; Belongs to the universal ribosomal protein uS2 family. (233 aa) | ||||
AGK97401.1 | Hypothetical protein. (60 aa) | ||||
rplS | Ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site. (114 aa) | ||||
rpsP | PFAM: Ribosomal protein S16; TIGRFAM: ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (81 aa) | ||||
rpmF | PFAM: Ribosomal L32p protein family; TIGRFAM: ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family. (60 aa) | ||||
rpmB | PFAM: Ribosomal L28 family; TIGRFAM: ribosomal protein L28; Belongs to the bacterial ribosomal protein bL28 family. (63 aa) | ||||
fmt | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (309 aa) | ||||
def-3 | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (150 aa) | ||||
AGK97288.1 | RNA polymerase sigma-G factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (259 aa) | ||||
AGK97281.1 | RNA polymerase sigma-K factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. (233 aa) | ||||
alaS | alanine--tRNA ligase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain. (879 aa) | ||||
aspS-3 | aspartyl-tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily. (594 aa) | ||||
hisS-2 | PFAM: Anticodon binding domain; tRNA synthetase class II core domain (G, H, P, S and T); TIGRFAM: histidyl-tRNA synthetase. (415 aa) | ||||
rpsU | PFAM: Ribosomal protein S21; TIGRFAM: ribosomal protein S21; Belongs to the bacterial ribosomal protein bS21 family. (58 aa) | ||||
lepA | GTP-binding protein LepA; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. (601 aa) | ||||
rpsT | Ribosomal protein S20; Binds directly to 16S ribosomal RNA. (88 aa) | ||||
rpmA | PFAM: Ribosomal L27 protein; TIGRFAM: ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family. (100 aa) | ||||
rplU | Ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family. (103 aa) | ||||
gatB-3 | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, B subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa) | ||||
gatA-3 | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, A subunit; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (486 aa) | ||||
gatC-3 | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, C subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (95 aa) | ||||
gatC-2 | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, C subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (95 aa) | ||||
gatA-2 | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, A subunit; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (486 aa) | ||||
gatB-2 | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, B subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (476 aa) | ||||
AGK96296.1 | Translation elongation factor Ts; PFAM: UBA/TS-N domain. (154 aa) | ||||
leuS | PFAM: tRNA synthetases class I (I, L, M and V); Anticodon-binding domain; TIGRFAM: leucyl-tRNA synthetase, eubacterial and mitochondrial family; Belongs to the class-I aminoacyl-tRNA synthetase family. (808 aa) | ||||
tyrS-2 | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 1 subfamily. (406 aa) | ||||
prfC | Peptide chain release factor 3; Increases the formation of ribosomal termination complexes and stimulates activities of RF-1 and RF-2. It binds guanine nucleotides and has strong preference for UGA stop codons. It may interact directly with the ribosome. The stimulation of RF-1 and RF-2 is significantly reduced by GTP and GDP, but not by GMP. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. PrfC subfamily. (529 aa) | ||||
trpS | tryptophanyl-tRNA synthetase; Catalyzes the attachment of tryptophan to tRNA(Trp). Belongs to the class-I aminoacyl-tRNA synthetase family. (346 aa) | ||||
def-2 | Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (150 aa) | ||||
def | N-formylmethionyl-tRNA deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (169 aa) | ||||
tyrS | tyrosyl-tRNA synthetase; Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two- step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr); Belongs to the class-I aminoacyl-tRNA synthetase family. TyrS type 2 subfamily. (408 aa) | ||||
hisS | PFAM: Anticodon binding domain; tRNA synthetase class II core domain (G, H, P, S and T); TIGRFAM: histidyl-tRNA synthetase. (431 aa) | ||||
aspS-2 | aspartyl-tRNA synthetase, archaeal type; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 2 subfamily. (425 aa) | ||||
prfA | Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA. (359 aa) | ||||
rpmE | Ribosomal protein L31; Binds the 23S rRNA. (70 aa) | ||||
ileS | isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 2 subfamily. (1035 aa) | ||||
gatB | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, B subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatB/GatE family. GatB subfamily. (479 aa) | ||||
gatA | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, A subunit; Allows the formation of correctly charged Gln-tRNA(Gln) through the transamidation of misacylated Glu-tRNA(Gln) in organisms which lack glutaminyl-tRNA synthetase. The reaction takes place in the presence of glutamine and ATP through an activated gamma-phospho-Glu- tRNA(Gln). (491 aa) | ||||
gatC | glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, C subunit; Allows the formation of correctly charged Asn-tRNA(Asn) or Gln-tRNA(Gln) through the transamidation of misacylated Asp-tRNA(Asn) or Glu-tRNA(Gln) in organisms which lack either or both of asparaginyl- tRNA or glutaminyl-tRNA synthetases. The reaction takes place in the presence of glutamine and ATP through an activated phospho-Asp- tRNA(Asn) or phospho-Glu-tRNA(Gln); Belongs to the GatC family. (95 aa) | ||||
aspS | aspartyl-tRNA synthetase, archaeal type; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn); Belongs to the class-II aminoacyl-tRNA synthetase family. Type 2 subfamily. (430 aa) | ||||
metG | Protein containing C-terminal region/beta chain of methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. (646 aa) | ||||
serS | seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec). (426 aa) |