STRINGSTRING
psaA-2 psaA-2 psbA-3 psbA-3 psbC-2 psbC-2 psaB-2 psaB-2 chlF chlF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
psaA-2Photosystem I core protein PsaA; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family. (782 aa)
psbA-3Photosystem q(b) protein; Photosystem II (PSII) is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. (371 aa)
psbC-2Photosystem II 44 kDa subunit reaction center protein; One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light- induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation; Belongs to the PsbB/PsbC family. PsbC subfamily. (461 aa)
psaB-2Photosystem I core protein PsaB; PsaA and PsaB bind P700, the primary electron donor of photosystem I (PSI), as well as the electron acceptors A0, A1 and FX. PSI is a plastocyanin/cytochrome c6-ferredoxin oxidoreductase, converting photonic excitation into a charge separation, which transfers an electron from the donor P700 chlorophyll pair to the spectroscopically characterized acceptors A0, A1, FX, FA and FB in turn. Oxidized P700 is reduced on the lumenal side of the thylakoid membrane by plastocyanin or cytochrome c6; Belongs to the PsaA/PsaB family. (743 aa)
chlFPhotosynthetic reaction center protein; Synthesizes chlorophyll f or chlorophyllide f (Chl f, 2- formyl chlorophyll a), probably by oxidation of chlorophyll a or chlorophyllide a and reduction of plastoquinone. The reaction is probably light-dependent. Chl f absorbs far red light (FRL, 707 nm in 100% methanol), and is synthesized when cells are grown in FRL, where it provides the advantage of extending the spectral range of harvested light in terrestrial cyanobacteria. Chl f synthesis is probably light-dependent. (419 aa)
Your Current Organism:
Synechococcus sp. PCC7335
NCBI taxonomy Id: 91464
Other names: Coccusdissimilis mexicanus PCC 7335, S. sp. PCC 7335, Synechococcus PCC 7335, Synechococcus PCC7335, Synechococcus mexicanus PCC 7335, Synechococcus sp. PCC 7335
Server load: low (26%) [HD]