Your Input: | |||||
APR51498.1 | Cytochrome c oxidase subunit 3; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa) | ||||
ctaB | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (300 aa) | ||||
ctaD | Cytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (558 aa) | ||||
APR51503.1 | Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (390 aa) | ||||
APR51713.1 | Cytochrome c family protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (215 aa) | ||||
cyoB | Ubiquinol oxidase subunit II; Incomplete; partial on complete genome; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (668 aa) | ||||
APR52260.1 | Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (209 aa) | ||||
cyoD | Cytochrome o ubiquinol oxidase subunit IV; Derived by automated computational analysis using gene prediction method: Protein Homology. (126 aa) | ||||
APR52665.1 | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology. (944 aa) | ||||
nuoA | NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (125 aa) | ||||
nuoA-2 | NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (124 aa) | ||||
nuoB | NADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (188 aa) | ||||
nuoC | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (307 aa) | ||||
nuoD | NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. (411 aa) | ||||
APR52931.1 | NAD(P)H-dependent oxidoreductase subunit E; Derived by automated computational analysis using gene prediction method: Protein Homology. (222 aa) | ||||
APR52933.1 | NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (434 aa) | ||||
APR52935.1 | NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (668 aa) | ||||
nuoH | NADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (351 aa) | ||||
nuoI | NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (161 aa) | ||||
APR52938.1 | NADH:ubiquinone oxidoreductase subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (208 aa) | ||||
nuoK | NADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (101 aa) | ||||
APR52940.1 | NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (685 aa) | ||||
APR52941.1 | NADH-quinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (517 aa) | ||||
nuoN | NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (484 aa) | ||||
APR53065.1 | Derived by automated computational analysis using gene prediction method: Protein Homology. (127 aa) | ||||
APR53872.1 | Cytochrome ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (843 aa) | ||||
APR53873.1 | Cytochrome c oxidase subunit II; Derived by automated computational analysis using gene prediction method: Protein Homology. (309 aa) | ||||
APR53874.1 | Derived by automated computational analysis using gene prediction method: Protein Homology. (128 aa) | ||||
APR54312.1 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (469 aa) | ||||
APR54313.1 | Peptidase M16; Derived by automated computational analysis using gene prediction method: Protein Homology. (472 aa) | ||||
APR54464.1 | Cytochrome c1; Derived by automated computational analysis using gene prediction method: Protein Homology. (284 aa) | ||||
APR54465.1 | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (429 aa) | ||||
petA | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (190 aa) |