STRINGSTRING
APR54465.1 APR54465.1 APR51498.1 APR51498.1 ctaD ctaD APR51503.1 APR51503.1 cyoB cyoB APR52260.1 APR52260.1 cyoD cyoD nuoA nuoA nuoA-2 nuoA-2 nuoB nuoB nuoC nuoC APR52933.1 APR52933.1 APR52935.1 APR52935.1 APR52938.1 APR52938.1 APR52940.1 APR52940.1 APR52941.1 APR52941.1 petA petA nuoN nuoN APR53872.1 APR53872.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
APR54465.1Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (429 aa)
APR51498.1Cytochrome c oxidase subunit 3; Derived by automated computational analysis using gene prediction method: Protein Homology. (301 aa)
ctaDCytochrome c oxidase subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. (558 aa)
APR51503.1Cytochrome c oxidase subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). (390 aa)
cyoBUbiquinol oxidase subunit II; Incomplete; partial on complete genome; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (668 aa)
APR52260.1Cytochrome o ubiquinol oxidase subunit III; Derived by automated computational analysis using gene prediction method: Protein Homology. (209 aa)
cyoDCytochrome o ubiquinol oxidase subunit IV; Derived by automated computational analysis using gene prediction method: Protein Homology. (126 aa)
nuoANADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (125 aa)
nuoA-2NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (124 aa)
nuoBNADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (188 aa)
nuoCNADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family. (307 aa)
APR52933.1NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family. (434 aa)
APR52935.1NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family. (668 aa)
APR52938.1NADH:ubiquinone oxidoreductase subunit J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (208 aa)
APR52940.1NADH-quinone oxidoreductase subunit L; Derived by automated computational analysis using gene prediction method: Protein Homology. (685 aa)
APR52941.1NADH-quinone oxidoreductase subunit M; Derived by automated computational analysis using gene prediction method: Protein Homology. (517 aa)
petAUbiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. (190 aa)
nuoNNADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (484 aa)
APR53872.1Cytochrome ubiquinol oxidase subunit I; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the heme-copper respiratory oxidase family. (843 aa)
Your Current Organism:
Sphingomonas koreensis
NCBI taxonomy Id: 93064
Other names: DSM 15582, IFO 16723, JCM 11456, KCCM 41069, KCTC 2882, NBRC 16723, S. koreensis, Sphingomonas koreensis Lee et al. 2001, Sphingomonas sp. ABOJT, Sphingomonas sp. ABOJU, Sphingomonas sp. ABOJV, Sphingomonas sp. JSS-26, Sphingomonas sp. JSS-28, Sphingomonas sp. JSS26, Sphingomonas sp. JSS28, strain JSS26
Server load: low (30%) [HD]