STRINGSTRING
ARHGEF6 ARHGEF6 GNB2 GNB2 GNG7 GNG7 GNG13 GNG13 GNB4 GNB4 GNB1 GNB1 GNG4 GNG4 CDC42 CDC42 GNG5 GNG5 PAK1 PAK1 GNB5 GNB5 GNG3 GNG3 GNG11 GNG11 GNGT1 GNGT1 GNB3 GNB3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ARHGEF6Rac/Cdc42 guanine nucleotide exchange factor 6. (775 aa)
GNB2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2. (340 aa)
GNG7Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (68 aa)
GNG13Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (67 aa)
GNB4Guanine nucleotide-binding protein subunit beta-4. (340 aa)
GNB1Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1. (340 aa)
GNG4Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (71 aa)
CDC42Cell division control protein 42 homolog isoform 1. (191 aa)
GNG5Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (68 aa)
PAK1Non-specific serine/threonine protein kinase. (575 aa)
GNB5G protein subunit beta 5. (395 aa)
GNG3Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (152 aa)
GNG11Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (73 aa)
GNGT1Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (74 aa)
GNB3Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3. (340 aa)
Your Current Organism:
Macaca mulatta
NCBI taxonomy Id: 9544
Other names: M. mulatta, Rhesus monkey, rhesus macaque, rhesus macaques, rhesus monkeys
Server load: low (22%) [HD]