STRINGSTRING
ASCL1 ASCL1 NEUROG2 NEUROG2 POU3F2 POU3F2 LMX1A LMX1A NR4A2 NR4A2 PITX3 PITX3 MYT1L MYT1L
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ASCL1Achaete-scute homolog 1; Transcription factor that plays a key role in neuronal differentiation: acts as a pioneer transcription factor, accessing closed chromatin to allow other factors to bind and activate neural pathways. Directly binds the E box motif (5'-CANNTG-3') on promoters and promotes transcription of neuronal genes. The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro. Plays a role at early stages of development of specific neural lineages in mos [...] (236 aa)
NEUROG2Neurogenin-2; Transcriptional regulator. Involved in neuronal differentiation. Activates transcription by binding to the E box (5'- CANNTG-3'). (272 aa)
POU3F2POU domain, class 3, transcription factor 2; Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro. Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL [...] (443 aa)
LMX1ALIM homeobox transcription factor 1-alpha; Acts as a transcriptional activator by binding to an A/T-rich sequence, the FLAT element, in the insulin gene promoter. Required for development of the roof plate and, in turn, for specification of dorsal cell fates in the CNS and developing vertebrae (By similarity). (382 aa)
NR4A2Nuclear receptor subfamily 4 group A member 2; Transcriptional regulator which is important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development. It is crucial for expression of a set of genes such as SLC6A3, SLC18A2, TH and DRD2 which are essential for development of mdDA neurons (By similarity); Belongs to the nuclear hormone receptor family. NR4 subfamily. (598 aa)
PITX3Pituitary homeobox 3; Transcriptional regulator which is important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development. In addition to its importance during development, it also has roles in the long-term survival and maintenance of the mdDA neurons. Activates NR4A2/NURR1-mediated transcription of genes such as SLC6A3, SLC18A2, TH and DRD2 which are essential for development of mdDA neurons. Acts by decreasing the interaction of NR4A2/NURR1 with the corepressor NCOR2/SMRT which acts through histone deacetylases (HDACs) to keep pro [...] (302 aa)
MYT1LMyelin transcription factor 1-like protein; Transcription factor that plays a key role in neuronal differentiation by specifically repressing expression of non-neuronal genes during neuron differentiation. In contrast to other transcription repressors that inhibit specific lineages, mediates repression of multiple differentiation programs. Also represses expression of negative regulators of neurogenesis, such as members of the Notch signaling pathway, including HES1. The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and [...] (1186 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]