STRINGSTRING
KCNQ1 KCNQ1 KCND1 KCND1 KCNJ2 KCNJ2 KCNA5 KCNA5 KCNH2 KCNH2 KCNQ4 KCNQ4 KCNC1 KCNC1 KCNH1 KCNH1 SCN2B SCN2B KCNA6 KCNA6 KCNE4 KCNE4 SCN3A SCN3A KCNE2 KCNE2 KCNT2 KCNT2 KCNIP3 KCNIP3 SCNN1G SCNN1G KCNAB3 KCNAB3 SCN1A SCN1A KCNJ4 KCNJ4 KCNE3 KCNE3 KCNG4 KCNG4 KCND3 KCND3 KCNH5 KCNH5 SCN4B SCN4B KCNA4 KCNA4 SCN5A SCN5A KCND2 KCND2 KCNQ5 KCNQ5 SCNN1B SCNN1B SCN8A SCN8A AKAP9 AKAP9 KCNQ2 KCNQ2 SCNN1A SCNN1A NAV1 NAV1 KCNA3 KCNA3 KCNA10 KCNA10 KCNC4 KCNC4 KCNB1 KCNB1 FGF14 FGF14 DPP6 DPP6 KCNAB2 KCNAB2 SCNN1D SCNN1D KCNIP4 KCNIP4 KCNA1 KCNA1 KCNQ3 KCNQ3 KCNJ14 KCNJ14 SCN3B SCN3B KCNE1 KCNE1 KCNS3 KCNS3 SCN9A SCN9A SCN10A SCN10A FGF13 FGF13 SCN1B SCN1B FGF12 FGF12 KCNIP1 KCNIP1 KCNAB1 KCNAB1 KCNIP2 KCNIP2 KCNB2 KCNB2 KCNC3 KCNC3 KCNV1 KCNV1 KCNJ18 KCNJ18 KCNJ12 KCNJ12 KCNA2 KCNA2 SCN2A SCN2A SCN7A SCN7A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KCNQ1Potassium voltage-gated channel subfamily KQT member 1; Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity). Associates with KCNE beta subunits that modulates current kinetics (By similarity). Induces a voltage-dependent by rapidly activating and slowly deactivating potassium-selective outward current (By similarity). Promotes also a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation participates in cardiac r [...] (676 aa)
KCND1Potassium voltage-gated channel subfamily D member 1; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits; Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.1/KCND1 sub-subfamily. (647 aa)
KCNJ2Inward rectifier potassium channel 2; Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be bl [...] (427 aa)
KCNA5Potassium voltage-gated channel subfamily A member 5; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...] (613 aa)
KCNH2Potassium voltage-gated channel subfamily H member 2; Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel. Channel properties are modulated by cAMP and subunit assembly. Mediates the rapidly activating component of the delayed rectifying potassium current in heart (IKr). [Isoform B-USO]: Has no channel activity by itself, but modulates channel characteristics by forming heterotetramers with other isoforms which are retained intracellularly and undergo ubiquitin- dependent degradation. (1159 aa)
KCNQ4Potassium voltage-gated channel subfamily KQT member 4; Probably important in the regulation of neuronal excitability. May underlie a potassium current involved in regulating the excitability of sensory cells of the cochlea. KCNQ4 channels are blocked by linopirdin, XE991 and bepridil, whereas clofilium is without significant effect. Muscarinic agonist oxotremorine-M strongly suppress KCNQ4 current in CHO cells in which cloned KCNQ4 channels were coexpressed with M1 muscarinic receptors. (695 aa)
KCNC1Potassium voltage-gated channel subfamily C member 1; Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons. The channel opens in response to the voltage difference across the membrane, forming a potassium-selective channel through which potassium ions pass in accordance with their electrochemical gradient. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNC2, and possibly other family members as well. Contributes to fire sustained trains of very brief action [...] (585 aa)
KCNH1Potassium voltage-gated channel subfamily H member 1; Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel. Channel properties are modulated by subunit assembly. Mediates IK(NI) current in myoblasts. Involved in the regulation of cell proliferation and differentiation, in particular adipogenic and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (MSCs). Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv10.1/KCNH1 sub-subfamily. (989 aa)
SCN2BSodium channel subunit beta-2; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity); Belongs to the sodium channel auxiliary subunit SCN2B (TC 8.A.17) family. (215 aa)
KCNA6Potassium voltage-gated channel subfamily A member 6; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA6, and possibly other family members as well [...] (529 aa)
KCNE4Potassium voltage-gated channel subfamily E member 4; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. May associate with KCNQ1/KVLTQ1 and inhibit potassium current; Belongs to the potassium channel KCNE family. (221 aa)
SCN3ASodium channel protein type 3 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, forms a sodium- selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. May contribute to the regulation of serotonin/5- hydroxytryptamine release by enterochromaffin cells (By similarity). In pancreatic endocrine cells, required for both glucagon and glucose- induced insulin secretion (By similarity). Belongs to the sod [...] (2000 aa)
KCNE2Potassium voltage-gated channel subfamily E member 2; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNH2/HERG is proposed to form the rapidly activating component of the delayed rectifying potassium current in heart (IKr). May associate with KCNQ2 and/or KCNQ3 and modulate the native M-t [...] (123 aa)
KCNT2Potassium channel subfamily T member 2; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. Activated by high intracellular sodium and chloride levels. Channel activity is inhibited by ATP and by inhalation anesthetics, such as isoflurane (By similarity). Inhibited upon stimulation of G-protein coupled receptors, such as CHRM1 and GRM1. (1135 aa)
KCNIP3Calsenilin; Calcium-dependent transcriptional repressor that binds to the DRE element of genes including PDYN and FOS. Affinity for DNA is reduced upon binding to calcium and enhanced by binding to magnesium. Seems to be involved in nociception (By similarity). May play a role in the regulation of PSEN2 proteolytic processing and apoptosis. Together with PSEN2 involved in modulation of amyloid-beta formation. (256 aa)
SCNN1GAmiloride-sensitive sodium channel subunit gamma; Sodium permeable non-voltage-sensitive ion channel inhibited by the diuretic amiloride. Mediates the electrodiffusion of the luminal sodium (and water, which follows osmotically) through the apical membrane of epithelial cells. Plays an essential role in electrolyte and blood pressure homeostasis, but also in airway surface liquid homeostasis, which is important for proper clearance of mucus. Controls the reabsorption of sodium in kidney, colon, lung and sweat glands. Also plays a role in taste perception. (649 aa)
KCNAB3Voltage-gated potassium channel subunit beta-3; Accessory potassium channel protein which modulates the activity of the pore-forming alpha subunit. Alters the functional properties of Kv1.5. (404 aa)
SCN1ASodium channel protein type 1 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Plays a key role in brain, probably by regulating the moment when neurotransmitters are released in neurons. Involved in sensory perception of mechanical pain: activation in somatosensory neurons induces pain without neurogenic inflammatio [...] (2009 aa)
KCNJ4Inward rectifier potassium channel 4; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium and cesium (By similarity); Belongs to the inward rectifier-type potassium channel [...] (445 aa)
KCNE3Potassium voltage-gated channel subfamily E member 3; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNC4/Kv3.4 is proposed to form the subthreshold voltage-gated potassium channel in skeletal muscle and to establish the resting membrane potential (RMP) in muscle cells. Associated with KC [...] (103 aa)
KCNG4Potassium voltage-gated channel subfamily G member 4; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.4/KCNG4 sub-subfamily. (519 aa)
KCND3Potassium voltage-gated channel subfamily D member 3; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits. Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.3/KCND3 sub-subfamily. (655 aa)
KCNH5Potassium voltage-gated channel subfamily H member 5; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a non-inactivating outward rectifying current. Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv10.2/KCNH5 sub-subfamily. (988 aa)
SCN4BSodium channel subunit beta-4; Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the susceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom. (228 aa)
KCNA4Potassium voltage-gated channel subfamily A member 4; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...] (653 aa)
SCN5ASodium channel protein type 5 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels. Belongs to the sodium chann [...] (2016 aa)
KCND2Potassium voltage-gated channel subfamily D member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action pote [...] (630 aa)
KCNQ5Potassium voltage-gated channel subfamily KQT member 5; Associates with KCNQ3 to form a potassium channel which contributes to M-type current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons. Therefore, it is important in the regulation of neuronal excitability. May contribute, with other potassium channels, to the molecular diversity of a heterogeneous population of M-channels, varying in kinetic and pharmacological properties, which underlie this physiologically important current [...] (951 aa)
SCNN1BAmiloride-sensitive sodium channel subunit beta; Sodium permeable non-voltage-sensitive ion channel inhibited by the diuretic amiloride. Mediates the electrodiffusion of the luminal sodium (and water, which follows osmotically) through the apical membrane of epithelial cells. Plays an essential role in electrolyte and blood pressure homeostasis, but also in airway surface liquid homeostasis, which is important for proper clearance of mucus. Controls the reabsorption of sodium in kidney, colon, lung and sweat glands. Also plays a role in taste perception; Belongs to the amiloride-sensit [...] (640 aa)
SCN8ASodium channel protein type 8 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.6/SCN8A subfamily. (1980 aa)
AKAP9A-kinase anchor protein 9; Scaffolding protein that assembles several protein kinases and phosphatases on the centrosome and Golgi apparatus. Required to maintain the integrity of the Golgi apparatus. Required for microtubule nucleation at the cis-side of the Golgi apparatus. Required for association of the centrosomes with the poles of the bipolar mitotic spindle during metaphase. In complex with PDE4DIP isoform 13/MMG8/SMYLE, recruits CAMSAP2 to the Golgi apparatus and tethers non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement. In compl [...] (3907 aa)
KCNQ2Potassium voltage-gated channel subfamily KQT member 2; Associates with KCNQ3 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. KCNQ2/KCNQ3 current is blocked by linopirdine and XE991, and activated by the anticonvulsant retigabine. As the native M-chan [...] (872 aa)
SCNN1AAmiloride-sensitive sodium channel subunit alpha; Sodium permeable non-voltage-sensitive ion channel inhibited by the diuretic amiloride. Mediates the electrodiffusion of the luminal sodium (and water, which follows osmotically) through the apical membrane of epithelial cells. Plays an essential role in electrolyte and blood pressure homeostasis, but also in airway surface liquid homeostasis, which is important for proper clearance of mucus. Controls the reabsorption of sodium in kidney, colon, lung and eccrine sweat glands. Also plays a role in taste perception. (728 aa)
NAV1Neuron navigator 1; May be involved in neuronal migration. (1877 aa)
KCNA3Potassium voltage-gated channel subfamily A member 3; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. (575 aa)
KCNA10Potassium voltage-gated channel subfamily A member 10; Mediates voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. The channel activity is up-regulated by cAMP; Belongs to the potassium channel family. A (Shaker) (TC 1.A.1.2) subfamily. Kv1.8/KCNA10 sub-subfamily. (511 aa)
KCNC4Potassium voltage-gated channel subfamily C member 4; This protein mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. (635 aa)
KCNB1Potassium voltage-gated channel subfamily B member 1; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain. Plays also a role in the regulation of exocytosis independently of its electrical function (By sim [...] (858 aa)
FGF14Fibroblast growth factor 14; Probably involved in nervous system development and function. (252 aa)
DPP6Dipeptidyl aminopeptidase-like protein 6; Promotes cell surface expression of the potassium channel KCND2. Modulates the activity and gating characteristics of the potassium channel KCND2. Has no dipeptidyl aminopeptidase activity. (865 aa)
KCNAB2Voltage-gated potassium channel subunit beta-2; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore. Promotes KCNA4 channel closure. Modulates the functional properties of KCNA5 [...] (415 aa)
SCNN1DAmiloride-sensitive sodium channel subunit delta; Sodium permeable non-voltage-sensitive ion channel inhibited by the diuretic amiloride. Mediates the electrodiffusion of the luminal sodium (and water, which follows osmotically) through the apical membrane of epithelial cells. Controls the reabsorption of sodium in kidney, colon, lung and sweat glands. Also plays a role in taste perception; Belongs to the amiloride-sensitive sodium channel (TC 1.A.6) family. SCNN1D subfamily. (802 aa)
KCNIP4Kv channel-interacting protein 4; Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels. Modulates KCND2 channel density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. Modulates KCND3/Kv4.3 currents. Isoform 4 does not increase KCND2 expression at the cell membrane. Isoform 4 retains KCND3 in the endoplasmic reticulum and negatively regulates its expression at the cell membrane. Belongs to the recoverin family. (250 aa)
KCNA1Potassium voltage-gated channel subfamily A member 1; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the kidney. Contributes to the regulation of the membrane potential and nerve signaling, and prevents neuronal hyperexcitability. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference acros [...] (495 aa)
KCNQ3Potassium voltage-gated channel subfamily KQT member 3; Associates with KCNQ2 or KCNQ5 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. (872 aa)
KCNJ14ATP-sensitive inward rectifier potassium channel 14; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ14 gives rise to low-conductance channels with a low affinity to the channel blockers Barium and Cesium [...] (436 aa)
SCN3BSodium channel subunit beta-3; Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with NFASC may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity). (215 aa)
KCNE1Potassium voltage-gated channel subfamily E member 1; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Assembled with KCNQ1/KVLQT1 is proposed to form the slowly activating delayed rectifier cardiac potassium (IKs) channel. The outward current reaches its steady state only after 50 seconds. Assembled with K [...] (129 aa)
KCNS3Potassium voltage-gated channel subfamily S member 3; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Heterotetrameric channel activity formed with KCNB1 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells (By similarity). (491 aa)
SCN9ASodium channel protein type 9 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.7/SCN9A subfamily. (1977 aa)
SCN10ASodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. (1956 aa)
FGF13Fibroblast growth factor 13; Microtubule-binding protein which directly binds tubulin and is involved in both polymerization and stabilization of microtubules (By similarity). Through its action on microtubules, may participate to the refinement of axons by negatively regulating axonal and leading processes branching (By similarity). Plays a crucial role in neuron polarization and migration in the cerebral cortex and the hippocampus (By similarity). May regulate voltage-gated sodium channels transport and function. May also play a role in MAPK signaling (By similarity). Required for th [...] (255 aa)
SCN1BSodium channel subunit beta-1; Regulatory subunit of multiple voltage-gated sodium channel complexes that play important roles in excitable membranes in brain, heart and skeletal muscle. Enhances the presence of the pore-forming alpha subunit at the cell surface and modulates channel gating characteristics and the rate of channel inactivation. Modulates the activity of multiple pore-forming alpha subunits, such as SCN1A, SCN2A, SCN3A, SCN4A, SCN5A and SCN10A. (268 aa)
FGF12Fibroblast growth factor 12; Involved in nervous system development and function. Involved in the positive regulation of voltage-gated sodium channel activity. Promotes neuronal excitability by elevating the voltage dependence of neuronal sodium channel SCN8A fast inactivation. (243 aa)
KCNIP1Kv channel-interacting protein 1; Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels. Regulates channel density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. In vitro, modulates KCND1/Kv4.1 and KCND2/Kv4.2 currents. Increases the presence of KCND2 at the cell surface. Belongs to the recoverin family. (241 aa)
KCNAB1Voltage-gated potassium channel subunit beta-1; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Modulates action potentials via its effect on the pore-forming alpha subunits (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members. Promotes the clos [...] (419 aa)
KCNIP2Kv channel-interacting protein 2; Regulatory subunit of Kv4/D (Shal)-type voltage-gated rapidly inactivating A-type potassium channels. Modulates channel density, inactivation kinetics and rate of recovery from inactivation in a calcium-dependent and isoform-specific manner. In vitro, modulates KCND2/Kv4.2 and KCND3/Kv4.3 currents. Involved in KCND2 and KCND3 trafficking to the cell surface. May be required for the expression of I(To) currents in the heart (By similarity). (285 aa)
KCNB2Potassium voltage-gated channel subfamily B member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric an [...] (911 aa)
KCNC3Potassium voltage-gated channel subfamily C member 3; Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons. The channel opens in response to the voltage difference across the membrane, forming a potassium-selective channel through which potassium ions pass in accordance with their electrochemical gradient. The channel displays rapid activation and inactivation kinetics. It plays a role in the regulation of the frequency, shape and duration of action potentials in Purkinje cells. Required for normal survival of cerebellar [...] (757 aa)
KCNV1Potassium voltage-gated channel subfamily V member 1; Potassium channel subunit that does not form functional channels by itself. Modulates KCNB1 and KCNB2 channel activity by shifting the threshold for inactivation to more negative values and by slowing the rate of inactivation. Can down-regulate the channel activity of KCNB1, KCNB2, KCNC4 and KCND1, possibly by trapping them in intracellular membranes. (500 aa)
KCNJ18Inward rectifier potassium channel 18; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium; Belongs to the inward rectifier-type potassium channel (TC 1.A.2.1) family. KCNJ12 subfamily. (433 aa)
KCNJ12ATP-sensitive inward rectifier potassium channel 12; Inward rectifying potassium channel that is activated by phosphatidylinositol 4,5-bisphosphate and that probably participates in controlling the resting membrane potential in electrically excitable cells. Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potas [...] (433 aa)
KCNA2Potassium voltage-gated channel subfamily A member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form funct [...] (499 aa)
SCN2ASodium channel protein type 2 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Implicated in the regulation of hippocampal replay occurring within sharp wave ripples (SPW-R) important for memory (By similarity). Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.2/SCN2A subfamily. (2005 aa)
SCN7ASodium channel protein type 7 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. (1682 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (18%) [HD]