STRINGSTRING
GNA11 GNA11 RGS17 RGS17 GNB3 GNB3 GNB4 GNB4 PTGER2 PTGER2 GNG11 GNG11 GNGT1 GNGT1 RGS8 RGS8 PDCL PDCL GNB5 GNB5 RGS9 RGS9 GNAO1 GNAO1 GNAQ GNAQ PTGER1 PTGER1 GNG3 GNG3 GNG8 GNG8 PTGER4 PTGER4 RAC3 RAC3 GNB2 GNB2 GNAI2 GNAI2 RGS9BP RGS9BP GNG2 GNG2 RGS7BP RGS7BP PLCB1 PLCB1 RGS12 RGS12 PTGER3 PTGER3 RGS7 RGS7 RGS18 RGS18 RGS16 RGS16 RGS10 RGS10 GNAI3 GNAI3 GNG12 GNG12 PREX1 PREX1 RGS3 RGS3 GNG10 GNG10 GNA14 GNA14 PLCB4 PLCB4 GNB1 GNB1 RGS11 RGS11 RGS14 RGS14 RGS4 RGS4 GNG4 GNG4 CHRM2 CHRM2 CHRM4 CHRM4 CASR CASR GNGT2 GNGT2 RGS21 RGS21 RGS5 RGS5 RGS13 RGS13 RGS6 RGS6 GNAI1 GNAI1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GNA11Guanine nucleotide-binding protein subunit alpha-11; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Acts as an activator of phospholipase C. (359 aa)
RGS17Regulator of G-protein signaling 17; Regulates G protein-coupled receptor signaling cascades, including signaling via muscarinic acetylcholine receptor CHRM2 and dopamine receptor DRD2. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Binds selectively to GNAZ and GNAI2 subunits, accelerates their GTPase activity and regulates their signaling activities. Negatively regulates mu-opioid receptor-mediated activation of the G-proteins (By similarity). (210 aa)
GNB3Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
GNB4Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
PTGER2Prostaglandin E2 receptor EP2 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. The subsequent raise in intracellular cAMP is responsible for the relaxing effect of this receptor on smooth muscle. (358 aa)
GNG11Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-11; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (73 aa)
GNGT1Guanine nucleotide-binding protein G(T) subunit gamma-T1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (74 aa)
RGS8Regulator of G-protein signaling 8; Regulates G protein-coupled receptor signaling cascades, including signaling via muscarinic acetylcholine receptor CHRM2 and dopamine receptor DRD2 (By similarity). Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Modulates the activity of potassium channels that are activated in response to DRD2 and CHRM2 signaling (By similarity). (198 aa)
PDCLPhosducin-like protein; Acts as a positive regulator of hedgehog signaling and regulates ciliary function. [Isoform 2]: Acts as a negative regulator of heterotrimeric G proteins assembly by trapping the preloaded G beta subunits inside the CCT chaperonin; Belongs to the phosducin family. (301 aa)
GNB5Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors. May play an important role in neuronal signaling, including in the par [...] (395 aa)
RGS9Regulator of G-protein signaling 9; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to GNAT1. Involved in phototransduction; key element in the recovery phase of visual transduction (By similarity). (674 aa)
GNAO1Guanine nucleotide-binding protein G(o) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(o) protein function is not clear. Stimulated by RGS14; Belongs to the G-alpha family. G(i/o/t/z) subfamily. (354 aa)
GNAQGuanine nucleotide-binding protein G(q) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity. Regulates chemotaxis of BM- derived neutrophils and dendritic cells (in vitro) (By similarity). Belongs to the G-alpha family. G(q) subfamily. (359 aa)
PTGER1Prostaglandin E2 receptor EP1 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(q) proteins which activate a phosphatidylinositol-calcium second messenger system. May play a role as an important modulator of renal function. Implicated the smooth muscle contractile response to PGE2 in various tissues; Belongs to the G-protein coupled receptor 1 family. (402 aa)
GNG3Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (75 aa)
GNG8Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-8; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (70 aa)
PTGER4Prostaglandin E2 receptor EP4 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. (488 aa)
RAC3Ras-related C3 botulinum toxin substrate 3; Plasma membrane-associated small GTPase which cycles between an active GTP-bound and inactive GDP-bound state. In active state binds to a variety of effector proteins to regulate cellular responses, such as cell spreading and the formation of actin-based protusions including lamellipodia and membrane ruffles. Promotes cell adhesion and spreading on fibrinogen in a CIB1 and alpha-IIb/beta3 integrin-mediated manner. (192 aa)
GNB2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
GNAI2Guanine nucleotide-binding protein G(i) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta- adrenergic stimuli. May play a role in cell division. (355 aa)
RGS9BPRegulator of G-protein signaling 9-binding protein; Regulator of G protein-coupled receptor (GPCR) signaling in phototransduction. Participates in the recovery phase of visual transduction via its interaction with RGS9-1 isoform. Acts as a membrane-anchor that mediates the targeting of RGS9-1 to the photoreceptor outer segment, where phototransduction takes place. Enhances the ability of RGS9-1 to stimulate G protein GTPase activity, allowing the visual signal to be terminated on the physiologically time scale. It also controls the proteolytic stability of RGS9-1, probably by protectin [...] (235 aa)
GNG2Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity). (71 aa)
RGS7BPRegulator of G-protein signaling 7-binding protein; Regulator of G protein-coupled receptor (GPCR) signaling. Regulatory subunit of the R7-Gbeta5 complexes that acts by controlling the subcellular location of the R7-Gbeta5 complexes. When palmitoylated, it targets the R7-Gbeta5 complexes to the plasma membrane, leading to inhibit G protein alpha subunits. When it is unpalmitoylated, the R7-Gbeta5 complexes undergo a nuclear/cytoplasmic shuttling. May also act by controlling the proteolytic stability of R7 proteins, probably by protecting them from degradation. (257 aa)
PLCB11-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1; The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. (1216 aa)
RGS12Regulator of G-protein signaling 12; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. (1447 aa)
PTGER3Prostaglandin E2 receptor EP3 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor can couple to both the inhibition of adenylate cyclase mediated by G(i) proteins, and to an elevation of intracellular calcium. Required for normal development of fever in response to pyrinogens, including IL1B, prostaglandin E2 and bacterial lipopolysaccharide (LPS). Required for normal potentiation of platelet aggregation by prostaglandin E2, and thus plays a role in the regulation of blood coagulation. Required for increased HCO3(-) secretion in the duodenum in response to muco [...] (418 aa)
RGS7Regulator of G-protein signaling 7; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. The RGS7/GNB5 dimer enhances GNAO1 GTPase activity. May play a role in synaptic vesicle exocytosis. Modulates the activity of potassium channels that are activated by GNAO1 in response to muscarinic acetylcholine receptor M2/CHRM2 signaling. (487 aa)
RGS18Regulator of G-protein signaling 18; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G(i) alpha-1, G(i) alpha-2, G(i) alpha-3 and G(q) alpha. (235 aa)
RGS16Regulator of G-protein signaling 16; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. Plays an important role in the phototransduction cascade by regulating the lifetime and effective concentration of activated transducin alpha. May regulate extra and intracellular mitogenic signals (By similarity). (202 aa)
RGS10Regulator of G-protein signaling 10; Regulates G protein-coupled receptor signaling cascades, including signaling downstream of the muscarinic acetylcholine receptor CHRM2. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Modulates the activity of potassium channels that are activated in response to CHRM2 signaling. Activity on GNAZ is inhibited by palmitoylation of the G-protein. (181 aa)
GNAI3Guanine nucleotide-binding protein G(i) subunit alpha; Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modul [...] (354 aa)
GNG12Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (72 aa)
PREX1Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein; Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils. (1659 aa)
RGS3Regulator of G-protein signaling 3; Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein- mediated release of inositol phosphates and activation of MAP kinases. (1198 aa)
GNG10Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-10; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. Interacts with beta-1 and beta-2, but not with beta-3. (68 aa)
GNA14Guanine nucleotide-binding protein subunit alpha-14; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. (355 aa)
PLCB41-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4; The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. This form has a role in retina signal transduction. (1194 aa)
GNB1Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
RGS11Regulator of G-protein signaling 11; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. (467 aa)
RGS14Regulator of G-protein signaling 14; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o) alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pa [...] (566 aa)
RGS4Regulator of G-protein signaling 4; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Activity on G(z)-alpha is inhibited by phosphorylation of the G-protein. Activity on G(z)-alpha and G(i)- alpha-1 is inhibited by palmitoylation of the G-protein. (302 aa)
GNG4Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (75 aa)
CHRM2Muscarinic acetylcholine receptor M2; The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. (466 aa)
CHRM4Muscarinic acetylcholine receptor M4; The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is inhibition of adenylate cyclase; Belongs to the G-protein coupled receptor 1 family. Muscarinic acetylcholine receptor subfamily. CHRM4 sub-subfamily. (479 aa)
CASRExtracellular calcium-sensing receptor; G-protein-coupled receptor that senses changes in the extracellular concentration of calcium ions and plays a key role in maintaining calcium homeostasis. Senses fluctuations in the circulating calcium concentration and modulates the production of parathyroid hormone (PTH) in parathyroid glands (By similarity). The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system. The G-protein-coupled receptor activity is activated by a co-agonist mechanism: aromatic amino acids, such as T [...] (1088 aa)
GNGT2Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-T2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (69 aa)
RGS21Regulator of G-protein signaling 21; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. (152 aa)
RGS5Regulator of G-protein signaling 5; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G(i)-alpha and G(o)-alpha, but not to G(s)-alpha (By similarity). (185 aa)
RGS13Regulator of G-protein signaling 13; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to both G(i)-alpha and G(q)-alpha (By similarity). (159 aa)
RGS6Regulator of G-protein signaling 6; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. The RGS6/GNB5 dimer enhances GNAO1 GTPase activity. (490 aa)
GNAI1Guanine nucleotide-binding protein G(i) subunit alpha-1; Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numer [...] (354 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (22%) [HD]