STRINGSTRING
DMGDH DMGDH BHMT BHMT MTR MTR MTHFR MTHFR MTRR MTRR
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
DMGDHDimethylglycine dehydrogenase, mitochondrial; Catalyzes the demethylation of N,N-dimethylglycine to sarcosine. Also has activity with sarcosine in vitro. (866 aa)
BHMTBetaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. (406 aa)
MTRMethionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. (1265 aa)
MTHFRMethylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. (697 aa)
MTRRMethionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. (698 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (30%) [HD]