STRINGSTRING
ADH1A ADH1A GSTA3 GSTA3 GSTM2 GSTM2 AOC2 AOC2 GSTM5 GSTM5 ALDH2 ALDH2 GSTT2B GSTT2B ADH1B ADH1B GSTM1 GSTM1 CYP2F1 CYP2F1 GSTA1 GSTA1 GSTO2 GSTO2 GSTM3 GSTM3 MGST3 MGST3 GSTO1 GSTO1 GSTM4 GSTM4 GSTA4 GSTA4 GSTA5 GSTA5 TXNDC12 TXNDC12 ALDH1B1 ALDH1B1 ADH6 ADH6 CYP1A1 CYP1A1 MGST1 MGST1 ADHFE1 ADHFE1 GSTP1 GSTP1 ALDH3A1 ALDH3A1 GSTA2 GSTA2 ADH7 ADH7 ADH4 ADH4 ADH1C ADH1C GSTK1 GSTK1 ALDH3B1 ALDH3B1 CYP1B1 CYP1B1 EPHX1 EPHX1 MGST2 MGST2 ALDH3B2 ALDH3B2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ADH1AAlcohol dehydrogenase 1A, alpha polypeptide; Belongs to the zinc-containing alcohol dehydrogenase family. (375 aa)
GSTA3Glutathione S-transferase A3; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Catalyzes isomerization reactions that contribute to the biosynthesis of steroid hormones. Efficiently catalyze obligatory double-bond isomerizations of delta(5)-androstene-3,17-dione and delta(5)-pregnene-3,20-dione, precursors to testosterone and progesterone, respectively. (222 aa)
GSTM2Glutathione S-transferase Mu 2; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. (218 aa)
AOC2Retina-specific copper amine oxidase; Has a monoamine oxidase activity with substrate specificity for 2-phenylethylamine and tryptamine. May play a role in adipogenesis. May be a critical modulator of signal transmission in retina. (756 aa)
GSTM5Glutathione S-transferase Mu 5; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. (218 aa)
ALDH2Aldehyde dehydrogenase, mitochondrial; Aldehyde dehydrogenase 2 family member; Belongs to the aldehyde dehydrogenase family. (517 aa)
GSTT2BGlutathione S-transferase theta-2B; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Has a sulfatase activity. (244 aa)
ADH1BAll-trans-retinol dehydrogenase [NAD(+)] ADH1B; Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate to retinoid metabolism. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and its derivatives such as all-trans-4-oxoretinal. Catalyzes in the oxidative direction with higher efficiency. Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal. (375 aa)
GSTM1Glutathione S-transferase Mu 1; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. (218 aa)
CYP2F1Cytochrome P450 2F1; May be involved in the metabolism of various pneumotoxicants including naphthalene. Is able to dealkylate ethoxycoumarin, propoxycoumarin, and pentoxyresorufin but possesses no activity toward ethoxyresorufin and only trace dearylation activity toward benzyloxyresorufin. Bioactivates 3-methylindole (3MI) by dehydrogenation to the putative electrophile 3-methylene-indolenine. Belongs to the cytochrome P450 family. (491 aa)
GSTA1Glutathione S-transferase A1, N-terminally processed; Glutathione S-transferase that catalyzes the nucleophilic attack of the sulfur atom of glutathione on the electrophilic groups of a wide range of exogenous and endogenous compounds (Probable). Involved in the formation of glutathione conjugates of both prostaglandin A2 (PGA2) and prostaglandin J2 (PGJ2). It also catalyzes the isomerization of D5-androstene-3,17-dione (AD) into D4-androstene- 3,17-dione and may therefore play an important role in hormone biosynthesis. Through its glutathione-dependent peroxidase activity toward the f [...] (222 aa)
GSTO2Glutathione S-transferase omega-2; Exhibits glutathione-dependent thiol transferase activity. Has high dehydroascorbate reductase activity and may contribute to the recycling of ascorbic acid. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA). Belongs to the GST superfamily. Omega family. (243 aa)
GSTM3Glutathione S-transferase Mu 3; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. May govern uptake and detoxification of both endogenous compounds and xenobiotics at the testis and brain blood barriers; Belongs to the GST superfamily. Mu family. (225 aa)
MGST3Microsomal glutathione S-transferase 3; Catalyzes oxydation of hydroxy-fatty acids. Also catalyzes the conjugation of a reduced glutathione to leukotriene A4 in vitro. May participate to the lipid metabolism ; Belongs to the MAPEG family. (152 aa)
GSTO1Glutathione S-transferase omega-1; Exhibits glutathione-dependent thiol transferase and dehydroascorbate reductase activities. Has S-(phenacyl)glutathione reductase activity. Has also glutathione S-transferase activity. Participates in the biotransformation of inorganic arsenic and reduces monomethylarsonic acid (MMA) and dimethylarsonic acid. (241 aa)
GSTM4Glutathione S-transferase Mu 4; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Active on 1-chloro- 2,4-dinitrobenzene. (218 aa)
GSTA4Glutathione S-transferase A4; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. This isozyme has a high catalytic efficiency with 4-hydroxyalkenals such as 4- hydroxynonenal (4-HNE). (222 aa)
GSTA5Glutathione S-transferase alpha 5. (222 aa)
TXNDC12Thioredoxin domain-containing protein 12; Possesses significant protein thiol-disulfide oxidase activity. (172 aa)
ALDH1B1Aldehyde dehydrogenase X, mitochondrial; ALDHs play a major role in the detoxification of alcohol- derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation. (517 aa)
ADH6Alcohol dehydrogenase 6. (375 aa)
CYP1A1Cytochrome P450 1A1; A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E [...] (512 aa)
MGST1Microsomal glutathione S-transferase 1; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Has a wide substrate specificity. (155 aa)
ADHFE1Hydroxyacid-oxoacid transhydrogenase, mitochondrial; Catalyzes the cofactor-independent reversible oxidation of gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA) coupled to reduction of 2-ketoglutarate (2-KG) to D-2-hydroxyglutarate (D-2-HG). D,L-3-hydroxyisobutyrate and L-3-hydroxybutyrate (L-3-OHB) are also substrates for HOT with 10-fold lower activities. (467 aa)
GSTP1Glutathione S-transferase P; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Regulates negatively CDK5 activity via p25/p35 translocation to prevent neurodegeneration. (210 aa)
ALDH3A1Aldehyde dehydrogenase, dimeric NADP-preferring; ALDHs play a major role in the detoxification of alcohol- derived acetaldehyde (Probable). They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation (Probable). Oxidizes medium and long chain aldehydes into non-toxic fatty acids. Preferentially oxidizes aromatic aldehyde substrates. Comprises about 50 percent of corneal epithelial soluble proteins (By similarity). May play a role in preventing corneal damage caused by ultraviolet light (By similarity). (453 aa)
GSTA2Glutathione S-transferase A2; Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles; Belongs to the GST superfamily. Alpha family. (222 aa)
ADH7All-trans-retinol dehydrogenase [NAD(+)] ADH7; Catalyzes the NAD-dependent oxidation of all-trans-retinol, alcohol, and omega-hydroxy fatty acids and their derivatives. Oxidizes preferentially all trans-retinol, all-trans-4-hydroxyretinol, 9-cis- retinol, 2-hexenol, and long chain omega-hydroxy fatty acids such as juniperic acid. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and aldehydes and their derivatives. Reduces preferentially all trans- retinal, all-trans-4-oxoretinal and hexanal. Catalyzes in the oxidative direction with higher efficiency. Ther [...] (394 aa)
ADH4All-trans-retinol dehydrogenase [NAD(+)] ADH4; Catalyzes the NAD-dependent oxidation of either all-trans- retinol or 9-cis-retinol. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Also catalyzes the reduction of benzoquinones. (399 aa)
ADH1CAlcohol dehydrogenase 1C, gamma polypeptide. (375 aa)
GSTK1Glutathione S-transferase kappa 1; Significant glutathione conjugating activity is found only with the model substrate, 1-chloro-2,4-dinitrobenzene (CDNB). (282 aa)
ALDH3B1Aldehyde dehydrogenase family 3 member B1; Oxidizes medium and long chain saturated and unsaturated aldehydes. Metabolizes also benzaldehyde. Low activity towards acetaldehyde and 3,4-dihydroxyphenylacetaldehyde. May not metabolize short chain aldehydes. Can use both NADP(+) and NAD(+) as electron acceptor. May have a protective role against the cytotoxicity induced by lipid peroxidation. (468 aa)
CYP1B1Cytochrome P450 1B1; A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Exhibits catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2- and 4-hydroxy E1 and E2. Displays a predominant hydroxylase activity towar [...] (543 aa)
EPHX1Epoxide hydrolase 1; Biotransformation enzyme that catalyzes the hydrolysis of arene and aliphatic epoxides to less reactive and more water soluble dihydrodiols by the trans addition of water (By similarity). May play a role in the metabolism of endogenous lipids such as epoxide-containing fatty acids ; Belongs to the peptidase S33 family. (455 aa)
MGST2Microsomal glutathione S-transferase 2; Can catalyze the production of LTC4 from LTA4 and reduced glutathione. Can catalyze the conjugation of 1-chloro-2,4- dinitrobenzene with reduced glutathione. (147 aa)
ALDH3B2Aldehyde dehydrogenase family 3 member B2; Oxidizes medium and long chain aldehydes into non-toxic fatty acids; Belongs to the aldehyde dehydrogenase family. (385 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (20%) [HD]