Your Input: | |||||
KCNAB1 | Voltage-gated potassium channel subunit beta-1; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Modulates action potentials via its effect on the pore-forming alpha subunits (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members. Promotes the clos [...] (419 aa) | ||||
PRXL2B | Prostamide/prostaglandin F synthase; Catalyzes the reduction of prostaglandin-ethanolamide H(2) (prostamide H(2)) to prostamide F(2alpha) with NADPH as proton donor. Also able to reduce prostaglandin H(2) to prostaglandin F(2alpha) (By similarity). (246 aa) | ||||
HSD17B4 | Peroxisomal multifunctional enzyme type 2; Bifunctional enzyme acting on the peroxisomal beta-oxidation pathway for fatty acids. Catalyzes the formation of 3-ketoacyl-CoA intermediates from both straight-chain and 2-methyl-branched-chain fatty acids. (761 aa) | ||||
ALDH3A1 | Aldehyde dehydrogenase, dimeric NADP-preferring; ALDHs play a major role in the detoxification of alcohol- derived acetaldehyde (Probable). They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation (Probable). Oxidizes medium and long chain aldehydes into non-toxic fatty acids. Preferentially oxidizes aromatic aldehyde substrates. Comprises about 50 percent of corneal epithelial soluble proteins (By similarity). May play a role in preventing corneal damage caused by ultraviolet light (By similarity). (453 aa) | ||||
TSTA3 | GDP-L-fucose synthase; Catalyzes the two-step NADP-dependent conversion of GDP-4- dehydro-6-deoxy-D-mannose to GDP-fucose, involving an epimerase and a reductase reaction. (321 aa) | ||||
RDH13 | Retinol dehydrogenase 13; Retinol dehydrogenase with a clear preference for NADP. Oxidizes all-trans-retinol, but seems to reduce all-trans-retinal with much higher efficiency. Has no activity toward steroids. (331 aa) | ||||
IDH1 | Isocitrate dehydrogenase 1. (414 aa) | ||||
AKR1B15 | Aldo-keto reductase family 1 member B15; [Isoform 1]: Catalyzes the NADPH-dependent reduction of a variety of carbonyl substrates, like aromatic aldehydes, alkenals, ketones and alpha-dicarbonyl compounds. In addition, catalyzes the reduction of androgens and estrogens with high positional selectivity (shows 17-beta- hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoAs. Displays strong enzymatic activity toward all-trans- retinal and 9-cis-retinal. May play a physiological role in retinoid metabolism. (344 aa) | ||||
DHRS9 | Dehydrogenase/reductase SDR family member 9; 3-alpha-hydroxysteroid dehydrogenase that converts 3-alpha- tetrahydroprogesterone (allopregnanolone) to dihydroxyprogesterone and 3-alpha-androstanediol to dihydroxyprogesterone. Plays also a role in the biosynthesis of retinoic acid from retinaldehyde. Can utilize both NADH and NADPH. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (379 aa) | ||||
PTGR1 | Prostaglandin reductase 1; Functions as 15-oxo-prostaglandin 13-reductase and acts on 15-oxo-PGE1, 15-oxo-PGE2 and 15-oxo-PGE2-alpha. Has no activity towards PGE1, PGE2 and PGE2-alpha (By similarity). Catalyzes the conversion of leukotriene B4 into its biologically less active metabolite, 12-oxo- leukotriene B4. This is an initial and key step of metabolic inactivation of leukotriene B4. (329 aa) | ||||
RDH16 | Retinol dehydrogenase 16; Oxidoreductase with a preference for NAD. Oxidizes all-trans- retinol, 9-cis-retinol, 11-cis-retinol and 13-cis-retinol to the corresponding aldehydes. Has higher activity towards CRBP-bound retinol than with free retinol. Oxidizes also 3-alpha- hydroxysteroids. Oxidizes androstanediol and androsterone to dihydrotestosterone and androstanedione. Can also catalyze the reverse reaction. (317 aa) | ||||
DHRS1 | Dehydrogenase/reductase SDR family member 1; Dehydrogenase/reductase 1; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (313 aa) | ||||
ADHFE1 | Hydroxyacid-oxoacid transhydrogenase, mitochondrial; Catalyzes the cofactor-independent reversible oxidation of gamma-hydroxybutyrate (GHB) to succinic semialdehyde (SSA) coupled to reduction of 2-ketoglutarate (2-KG) to D-2-hydroxyglutarate (D-2-HG). D,L-3-hydroxyisobutyrate and L-3-hydroxybutyrate (L-3-OHB) are also substrates for HOT with 10-fold lower activities. (467 aa) | ||||
UEVLD | Ubiquitin-conjugating enzyme E2 variant 3; Possible negative regulator of polyubiquitination. In the N-terminal section; belongs to the ubiquitin- conjugating enzyme family. UEV subfamily. (471 aa) | ||||
DHRS7B | Dehydrogenase/reductase SDR family member 7B; Putative oxidoreductase; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (325 aa) | ||||
ADH6 | Alcohol dehydrogenase 6. (375 aa) | ||||
G6PD | Glucose-6-phosphate 1-dehydrogenase; Cytosolic glucose-6-phosphate dehydrogenase that catalyzes the first and rate-limiting step of the oxidative branch within the pentose phosphate pathway/shunt, an alternative route to glycolysis for the dissimilation of carbohydrates and a major source of reducing power and metabolic intermediates for fatty acid and nucleic acid biosynthetic processes. (515 aa) | ||||
BDH1 | D-beta-hydroxybutyrate dehydrogenase, mitochondrial; 3-hydroxybutyrate dehydrogenase 1; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (343 aa) | ||||
RDH11 | Retinol dehydrogenase 11; Retinol dehydrogenase with a clear preference for NADP. Displays high activity towards 9-cis, 11-cis and all-trans-retinol, and to a lesser extent on 13-cis-retinol. Exhibits a low reductive activity towards unsaturated medium-chain aldehydes such as cis -6-nonenal and no activity toward nonanal or 4-hydroxy-nonenal. Has no dehydrogenase activity towards steroid. (318 aa) | ||||
RDH14 | Retinol dehydrogenase 14; Retinol dehydrogenase with a clear preference for NADP. Displays high activity towards 9-cis, 11-cis and all-trans-retinol. Shows a very weak activity towards 13-cis-retinol. Has no activity towards steroid; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (336 aa) | ||||
AKR1C1 | Aldo-keto reductase family 1 member C1; Converts progesterone to its inactive form, 20-alpha- dihydroxyprogesterone (20-alpha-OHP). In the liver and intestine, may have a role in the transport of bile. May have a role in monitoring the intrahepatic bile acid concentration. Has a low bile-binding ability. May play a role in myelin formation; Belongs to the aldo/keto reductase family. (323 aa) | ||||
AKR1C2 | Aldo-keto reductase family 1 member C2; Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5- beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha-DHT) to 5-alpha- androstane-3-alpha,17-beta-diol (3-alpha-diol). Has a high bile-binding ability. (323 aa) | ||||
HADHA | Trifunctional enzyme subunit alpha, mitochondrial; Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway. The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA. Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long-chain fatty acids. Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional en [...] (763 aa) | ||||
AKR1C3 | Aldo-keto reductase family 1 member C3; Catalyzes the conversion of aldehydes and ketones to alcohols. Catalyzes the reduction of prostaglandin (PG) D2, PGH2 and phenanthrenequinone (PQ) and the oxidation of 9-alpha,11-beta-PGF2 to PGD2. Functions as a bi-directional 3-alpha-, 17-beta- and 20-alpha HSD. Can interconvert active androgens, estrogens and progestins with their cognate inactive metabolites. Preferentially transforms androstenedione (4-dione) to testosterone; Belongs to the aldo/keto reductase family. (323 aa) | ||||
AKR1C4 | Aldo-keto reductase family 1 member C4; Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan- 3-alpha,17-beta-diol (3-alpha-diol). Also has some 20-alpha- hydroxysteroid dehydrogenase activity. The biotransformation of the pesticide chlordecone (kepone) to its corresponding alcohol leads to increased biliary excretion of the pesticide and concomitant reduction of its neurotoxicity since bile is the major excretory route; Belongs to the aldo/keto reductase family. (323 aa) | ||||
HSD17B12 | Very-long-chain 3-oxoacyl-CoA reductase; Catalyzes the second of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme has a 3-ketoacyl-CoA reductase activity, reducing 3-ketoacyl-CoA to 3- hydroxyacyl-CoA, within each cycle of fatty acid elongation. Thereby, it may participate in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membra [...] (312 aa) | ||||
PGD | 6-phosphogluconate dehydrogenase, decarboxylating; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (483 aa) | ||||
SORD | Sorbitol dehydrogenase; Polyol dehydrogenase that catalyzes the reversible NAD(+)- dependent oxidation of various sugar alcohols. Is mostly active with D- sorbitol (D-glucitol), L-threitol, xylitol and ribitol as substrates, leading to the C2-oxidized products D-fructose, L-erythrulose, D- xylulose, and D-ribulose, respectively. Is a key enzyme in the polyol pathway that interconverts glucose and fructose via sorbitol, which constitutes an important alternate route for glucose metabolism. The polyol pathway is believed to be involved in the etiology of diabetic complications, such as d [...] (357 aa) | ||||
DHRS13 | Dehydrogenase/reductase SDR family member 13; Putative oxidoreductase. (377 aa) | ||||
KCNAB2 | Voltage-gated potassium channel subunit beta-2; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore. Promotes KCNA4 channel closure. Modulates the functional properties of KCNA5 [...] (415 aa) | ||||
HSD17B3 | Testosterone 17-beta-dehydrogenase 3; Favors the reduction of androstenedione to testosterone. Uses NADPH while the two other EDH17B enzymes use NADH. (310 aa) | ||||
HSD17B8 | Estradiol 17-beta-dehydrogenase 8; NAD-dependent 17-beta-hydroxysteroid dehydrogenase with highest activity towards estradiol. Has very low activity towards testosterone. The heterotetramer with CBR4 has NADH- dependent 3-ketoacyl-acyl carrier protein reductase activity, and thereby plays a role in mitochondrial fatty acid biosynthesis. Within the heterotetramer, HSD17B8 binds NADH; CBR4 binds NADPD. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (261 aa) | ||||
MDH1B | Malate dehydrogenase 1B. (518 aa) | ||||
AKR1A1 | Aldo-keto reductase family 1 member A1; Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosaccharides and bile acids, with a preference for negatively charged substrates, such as glucuronate and succinic semialdehyde. Functions as a detoxifiying enzyme by reducing a range of toxic aldehydes. Reduces methylglyoxal and 3-deoxyglucosone, which are present at elevated levels under hyperglycemic conditions [...] (325 aa) | ||||
CYP4A22 | Cytochrome P450 4A22; Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate and palmitate. Shows no activity towards arachidonic acid and prostaglandin A1. Lacks functional activity in the kidney and does not contribute to renal 20-hydroxyeicosatetraenoic acid (20-HETE) biosynthesis. (519 aa) | ||||
NSDHL | Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating; Involved in the sequential removal of two C-4 methyl groups in post-squalene cholesterol biosynthesis. Belongs to the 3-beta-HSD family. (373 aa) | ||||
ME1 | Malic enzyme 1. (572 aa) | ||||
SDR16C5 | Epidermal retinol dehydrogenase 2; Oxidoreductase with strong preference for NAD. Active in both the oxidative and reductive directions. Oxidizes all-trans-retinol in all-trans-retinaldehyde. No activity was detected with 11-cis-retinol or 11-cis-retinaldehyde as substrates with either NAD(+)/NADH or NADP(+)/NADPH; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (318 aa) | ||||
ENSP00000428055 | Novel protein. (88 aa) | ||||
ADH1C | Alcohol dehydrogenase 1C, gamma polypeptide. (375 aa) | ||||
ADH4 | All-trans-retinol dehydrogenase [NAD(+)] ADH4; Catalyzes the NAD-dependent oxidation of either all-trans- retinol or 9-cis-retinol. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Also catalyzes the reduction of benzoquinones. (399 aa) | ||||
LDHAL6A | L-lactate dehydrogenase A-like 6A; Displays an lactate dehydrogenase activity. Significantly increases the transcriptional activity of JUN, when overexpressed. (332 aa) | ||||
GPD1L | Glycerol-3-phosphate dehydrogenase 1-like protein; Plays a role in regulating cardiac sodium current; decreased enzymatic activity with resulting increased levels of glycerol 3- phosphate activating the DPD1L-dependent SCN5A phosphorylation pathway, may ultimately lead to decreased sodium current; cardiac sodium current may also be reduced due to alterations of NAD(H) balance induced by DPD1L; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (351 aa) | ||||
AKR1B1 | Aldo-keto reductase family 1 member B1; Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosacharides, bile acids and xenobiotics substrates. Key enzyme in the polyol pathway, catalyzes reduction of glucose to sorbitol during hyperglycemia. Reduces steroids and their derivatives and prostaglandins. Displays low enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis- retinal. Catalyzes t [...] (316 aa) | ||||
HMGCR | 3-hydroxy-3-methylglutaryl-coenzyme A reductase; Transmembrane glycoprotein that is the rate-limiting enzyme in cholesterol biosynthesis as well as in the biosynthesis of nonsterol isoprenoids that are essential for normal cell function including ubiquinone and geranylgeranyl proteins. (888 aa) | ||||
CBR1 | Carbonyl reductase [NADPH] 1; NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol. Can convert prostaglandin E2 to prostaglandin F2- alpha. Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S- nitrosoglutathione. (277 aa) | ||||
CBR3 | Carbonyl reductase [NADPH] 3; Has low NADPH-dependent oxidoreductase activity towards 4- benzoylpyridine and menadione (in vitro). Belongs to the short-chain dehydrogenases/reductases (SDR) family. (277 aa) | ||||
CTBP1 | C-terminal-binding protein 1; Corepressor targeting diverse transcription regulators such as GLIS2 or BCL6. Has dehydrogenase activity. Involved in controlling the equilibrium between tubular and stacked structures in the Golgi complex. Functions in brown adipose tissue (BAT) differentiation. Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (440 aa) | ||||
SDR9C7 | Short-chain dehydrogenase/reductase family 9C member 7; Displays weak conversion of all-trans-retinal to all-trans- retinol in the presence of NADH. Has apparently no steroid dehydrogenase activity; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (313 aa) | ||||
ADH5 | Alcohol dehydrogenase class-3; Catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Class-III ADH is remarkably ineffective in oxidizing ethanol ; Belongs to the zinc-containing alcohol dehydrogenase family. Class-III subfamily. (374 aa) | ||||
BDH2 | 3-hydroxybutyrate dehydrogenase type 2; Dehydrogenase that mediates the formation of 2,5- dihydroxybenzoic acid (2,5-DHBA), a siderophore that shares structural similarities with bacterial enterobactin and associates with LCN2, thereby playing a key role in iron assimilation and homeostasis. Plays a role in susceptibility to bacterial infection by providing an assimilable source of iron that is exploited by pathogenic bacteria (By similarity). Also acts as a 3-hydroxybutyrate dehydrogenase. (245 aa) | ||||
HPGD | 15-hydroxyprostaglandin dehydrogenase [NAD(+)]; Prostaglandin inactivation. Contributes to the regulation of events that are under the control of prostaglandin levels. Catalyzes the NAD-dependent dehydrogenation of lipoxin A4 to form 15-oxo-lipoxin A4. Inhibits in vivo proliferation of colon cancer cells. (266 aa) | ||||
ADH7 | All-trans-retinol dehydrogenase [NAD(+)] ADH7; Catalyzes the NAD-dependent oxidation of all-trans-retinol, alcohol, and omega-hydroxy fatty acids and their derivatives. Oxidizes preferentially all trans-retinol, all-trans-4-hydroxyretinol, 9-cis- retinol, 2-hexenol, and long chain omega-hydroxy fatty acids such as juniperic acid. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and aldehydes and their derivatives. Reduces preferentially all trans- retinal, all-trans-4-oxoretinal and hexanal. Catalyzes in the oxidative direction with higher efficiency. Ther [...] (394 aa) | ||||
HSD3B7 | 3 beta-hydroxysteroid dehydrogenase type 7; The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. HSD VII is active against four 7-alpha-hydroxylated sterols. Does not metabolize several different C(19/21) steroids as substrates. Involved in bile acid synthesis. Plays a key role in cell positioning and movement in lymphoid tissues by mediating degradation of 7-alpha,25- dihydroxycholesterol (7-alpha,25-OHC): 7-alpha,25-OHC acts as a ligand for the G protein-coupled receptor GPR183/EBI2, a chemotactic receptor for a number of lymph [...] (369 aa) | ||||
CRYL1 | Lambda-crystallin homolog; Crystallin lambda 1. (319 aa) | ||||
AKR1E2 | 1,5-anhydro-D-fructose reductase; Catalyzes the NADPH-dependent reduction of 1,5-anhydro-D- fructose (AF) to 1,5-anhydro-D-glucitol (By similarity). Has low NADPH- dependent reductase activity towards 9,10-phenanthrenequinone (in vitro). (320 aa) | ||||
IDH3A | Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial; Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. (366 aa) | ||||
LDHD | Probable D-lactate dehydrogenase, mitochondrial; Involved in D-lactate, but not L-lactate catabolic process. Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (507 aa) | ||||
GPD1 | Glycerol-3-phosphate dehydrogenase 1; Belongs to the NAD-dependent glycerol-3-phosphate dehydrogenase family. (349 aa) | ||||
LDHAL6B | Lactate dehydrogenase A like 6B. (381 aa) | ||||
KCNAB3 | Voltage-gated potassium channel subunit beta-3; Accessory potassium channel protein which modulates the activity of the pore-forming alpha subunit. Alters the functional properties of Kv1.5. (404 aa) | ||||
DCXR | L-xylulose reductase; Catalyzes the NADPH-dependent reduction of several pentoses, tetroses, trioses, alpha-dicarbonyl compounds and L-xylulose. Participates in the uronate cycle of glucose metabolism. May play a role in the water absorption and cellular osmoregulation in the proximal renal tubules by producing xylitol, an osmolyte, thereby preventing osmolytic stress from occurring in the renal tubules. (244 aa) | ||||
CBR4 | Carbonyl reductase family member 4; The heterotetramer with HSD17B8 has NADH-dependent 3- ketoacyl-acyl carrier protein reductase activity, and thereby plays a role in mitochondrial fatty acid biosynthesis. Within the heterotetramer, HSD17B8 binds NADH; CBR4 binds NADPD. The homotetramer has NADPH-dependent quinone reductase activity. Both homotetramer and the heterotetramer have broad substrate specificity and can reduce 9,10- phenanthrenequinone, 1,4-benzoquinone and various other o-quinones and p-quinones (in vitro). (237 aa) | ||||
FASN | 3-hydroxyacyl-[acyl-carrier-protein] dehydratase; Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities as an acyl carrier protein. (2511 aa) | ||||
ADH1B | All-trans-retinol dehydrogenase [NAD(+)] ADH1B; Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate to retinoid metabolism. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and its derivatives such as all-trans-4-oxoretinal. Catalyzes in the oxidative direction with higher efficiency. Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal. (375 aa) | ||||
CTBP2 | C-terminal-binding protein 2; Corepressor targeting diverse transcription regulators. Functions in brown adipose tissue (BAT) differentiation (By similarity); Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (985 aa) | ||||
GRHPR | Glyoxylate reductase/hydroxypyruvate reductase; Enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. Reduces hydroxypyruvate to D-glycerate, glyoxylate to glycolate oxidizes D- glycerate to hydroxypyruvate; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (328 aa) | ||||
HSD11B2 | Corticosteroid 11-beta-dehydrogenase isozyme 2; Catalyzes the conversion of cortisol to the inactive metabolite cortisone. Modulates intracellular glucocorticoid levels, thus protecting the nonselective mineralocorticoid receptor from occupation by glucocorticoids. (405 aa) | ||||
UGDH | UDP-glucose 6-dehydrogenase; Catalyzes the formation of UDP-alpha-D-glucuronate, a constituent of complex glycosaminoglycans. Required for the biosynthesis of chondroitin sulfate and heparan sulfate. Required for embryonic development via its role in the biosynthesis of glycosaminoglycans (By similarity). Belongs to the UDP-glucose/GDP-mannose dehydrogenase family. (494 aa) | ||||
ME2 | NAD-dependent malic enzyme, mitochondrial; Malic enzyme 2; Belongs to the malic enzymes family. (584 aa) | ||||
IMPDH2 | Inosine-5'-monophosphate dehydrogenase 2; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors. (514 aa) | ||||
ZADH2 | Prostaglandin reductase 3; Functions as 15-oxo-prostaglandin 13-reductase and acts on 15-keto-PGE1, 15-keto-PGE2, 15-keto-PGE1-alpha and 15-keto-PGE2-alpha with highest efficiency towards 15-keto-PGE2-alpha. Overexpression represses transcriptional activity of PPARG and inhibits adipocyte differentiation. (377 aa) | ||||
HADHB | Trifunctional enzyme subunit beta, mitochondrial; Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway. The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA. Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long- chain fatty acids. Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional en [...] (474 aa) | ||||
DHRS4 | Dehydrogenase/reductase SDR family member 4; Reduces all-trans-retinal and 9-cis retinal. Can also catalyze the oxidation of all-trans-retinol with NADP as co-factor, but with much lower efficiency. Reduces alkyl phenyl ketones and alpha- dicarbonyl compounds with aromatic rings, such as pyrimidine-4- aldehyde, 3-benzoylpyridine, 4-benzoylpyridine, menadione and 4- hexanoylpyridine. Has no activity towards aliphatic aldehydes and ketones (By similarity); Belongs to the short-chain dehydrogenases/reductases (SDR) family. (278 aa) | ||||
MDH2 | Malate dehydrogenase, mitochondrial; Malate dehydrogenase 2. (338 aa) | ||||
DHRS7C | Dehydrogenase/reductase SDR family member 7C; Putative oxidoreductase. (312 aa) | ||||
IDH2 | Isocitrate dehydrogenase [NADP], mitochondrial; Plays a role in intermediary metabolism and energy production. It may tightly associate or interact with the pyruvate dehydrogenase complex; Belongs to the isocitrate and isopropylmalate dehydrogenases family. (452 aa) | ||||
SDR42E1 | Short chain dehydrogenase/reductase family 42E, member 1. (393 aa) | ||||
HSD17B13 | Hydroxysteroid 17-beta dehydrogenase 13. (300 aa) | ||||
DHRS4L2 | Dehydrogenase/reductase SDR family member 4-like 2; Probable oxidoreductase. (232 aa) | ||||
DHRS2 | Dehydrogenase/reductase SDR family member 2, mitochondrial; Displays NADPH-dependent dicarbonyl reductase activity in vitro with 3,4-Hexanedione, 2,3-Heptanedione and 1-Phenyl-1,2- propanedione as substrates. No reductase activity is displayed in vitro with steroids, retinoids and sugars as substrates. Attenuates MDM2- mediated p53/TP53 degradation, leading to p53/TP53 stabilization and increased transcription activity, resulting in the accumulation of MDM2 and CDKN1A/p21; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (300 aa) | ||||
IMPDH1 | Inosine-5'-monophosphate dehydrogenase 1; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism. It may also have a role in the development of malignancy and the growth progression of some tumors; Belongs to the IMPDH/GMPR family. (599 aa) | ||||
HSD17B11 | Estradiol 17-beta-dehydrogenase 11; Can convert androstan-3-alpha,17-beta-diol (3-alpha-diol) to androsterone in vitro, suggesting that it may participate in androgen metabolism during steroidogenesis. May act by metabolizing compounds that stimulate steroid synthesis and/or by generating metabolites that inhibit it. Has no activity toward DHEA (dehydroepiandrosterone), or A- dione (4-androste-3,17-dione), and only a slight activity toward testosterone to A-dione. Tumor-associated antigen in cutaneous T-cell lymphoma. (300 aa) | ||||
AKR1B10 | Aldo-keto reductase family 1 member B10; Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays strong enzymatic activity toward all-trans- retinal, 9-cis-retinal, and 13-cis-retinal. Plays a critical role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4- hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls). Displays no reductase activity towards glucose. (316 aa) | ||||
AKR7A3 | Aflatoxin B1 aldehyde reductase member 3; Can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. May be involved in protection of liver against the toxic and carcinogenic effects of AFB1, a potent hepatocarcinogen. (331 aa) | ||||
HSD11B1 | Corticosteroid 11-beta-dehydrogenase isozyme 1; Catalyzes reversibly the conversion of cortisol to the inactive metabolite cortisone. Catalyzes reversibly the conversion of 7-ketocholesterol to 7-beta-hydroxycholesterol. In intact cells, the reaction runs only in one direction, from 7-ketocholesterol to 7-beta- hydroxycholesterol (By similarity). (292 aa) | ||||
HSD3B1 | 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 1; A bifunctional enzyme responsible for the oxidation and isomerization of 3beta-hydroxy-Delta(5)-steroid precursors to 3-oxo- Delta(4)-steroids, an essential step in steroid hormone biosynthesis. Specifically catalyzes the conversion of pregnenolone to progesterone, 17alpha-hydroxypregnenolone to 17alpha-hydroxyprogesterone, dehydroepiandrosterone (DHEA) to 4-androstenedione, and androstenediol to testosterone. Additionally, catalyzes the interconversion between 3beta-hydroxy and 3-oxo-5alpha-androstane steroids controlli [...] (373 aa) | ||||
HIBADH | 3-hydroxyisobutyrate dehydrogenase, mitochondrial; 3-hydroxyisobutyrate dehydrogenase. (336 aa) | ||||
HSD17B14 | 17-beta-hydroxysteroid dehydrogenase 14; Has NAD-dependent 17-beta-hydroxysteroid dehydrogenase activity. Converts oestradiol to oestrone. The physiological substrate is not known. Acts on oestradiol and 5-androstene-3-beta,17-beta-diol (in vitro). (270 aa) | ||||
CYP27A1 | Sterol 26-hydroxylase, mitochondrial; Cytochrome P450 monooxygenase that catalyzes regio- and stereospecific hydroxylation of cholesterol and its derivatives. Hydroxylates (with R stereochemistry) the terminal methyl group of cholesterol side-chain in a three step reaction to yield at first a C26 alcohol, then a C26 aldehyde and finally a C26 acid. Regulates cholesterol homeostasis by catalyzing the conversion of excess cholesterol to bile acids via both the 'neutral' (classic) and the 'acid' (alternative) pathways. May also regulate cholesterol homeostasis via generation of active oxy [...] (531 aa) | ||||
RDH5 | Retinol dehydrogenase 5; Catalyzes the oxidation of cis-isomers of retinol, including 11-cis-, 9-cis-, and 13-cis-retinol in an NAD-dependent manner. Has no activity towards all-trans retinal (By similarity). Plays a significant role in 11-cis retinol oxidation in the retinal pigment epithelium cells (RPE). Also recognizes steroids (androsterone, androstanediol) as its substrates. Belongs to the short-chain dehydrogenases/reductases (SDR) family. (318 aa) | ||||
HSD17B7 | 3-keto-steroid reductase; Responsible for the reduction of the keto group on the C-3 of sterols; Belongs to the short-chain dehydrogenases/reductases (SDR) family. ERG27 subfamily. (341 aa) | ||||
PXDN | Peroxidasin homolog; Displays low peroxidase activity and is likely to participate in H(2)O(2) metabolism and peroxidative reactions in the cardiovascular system. Plays a role in extracellular matrix formation. (1479 aa) | ||||
AKR1D1 | Aldo-keto reductase family 1 member D1; Catalyzes the stereospecific NADPH-dependent reduction of the C4-C5 double bond of bile acid intermediates and steroid hormones carrying a delta(4)-3-one structure to yield an A/B cis-ring junction. This cis-configuration is crucial for bile acid biosynthesis and plays important roles in steroid metabolism. Capable of reducing a broad range of delta-(4)-3-ketosteroids from C18 (such as, 17beta- hydroxyestr-4-en-3-one) to C27 (such as, 7alpha-hydroxycholest-4-en-3- one). Belongs to the aldo/keto reductase family. (326 aa) | ||||
RDH10 | Retinol dehydrogenase 10; Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinol to all-trans-retinal. Has no detectable activity towards 11-cis-retinol, 9-cis-retinol and 13-cis-retinol. (341 aa) | ||||
AKR7A2 | Aflatoxin B1 aldehyde reductase member 2; Catalyzes the NADPH-dependent reduction of succinic semialdehyde to gamma-hydroxybutyrate. May have an important role in producing the neuromodulator gamma-hydroxybutyrate (GHB). Has broad substrate specificity. Has NADPH-dependent aldehyde reductase activity towards 2-carboxybenzaldehyde, 2-nitrobenzaldehyde and pyridine-2- aldehyde (in vitro). Can reduce 1,2-naphthoquinone and 9,10- phenanthrenequinone (in vitro). Can reduce the dialdehyde protein- binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. May be involved in prote [...] (359 aa) | ||||
SPR | Sepiapterin reductase; Catalyzes the final one or two reductions in tetra- hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin; Belongs to the sepiapterin reductase family. (261 aa) | ||||
EHHADH | Enoyl-CoA hydratase/3,2-trans-enoyl-CoA isomerase; enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase; In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (723 aa) | ||||
HSD17B1 | Estradiol 17-beta-dehydrogenase 1; Favors the reduction of estrogens and androgens. Also has 20- alpha-HSD activity. Uses preferentially NADH; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (329 aa) | ||||
DHDH | Dihydrodiol dehydrogenase; Belongs to the Gfo/Idh/MocA family. (334 aa) | ||||
IDH3G | Isocitrate dehydrogenase [NAD] subunit gamma, mitochondrial; Regulatory subunit which plays a role in the allosteric regulation of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. (393 aa) | ||||
DHRS7 | Dehydrogenase/reductase SDR family member 7; Dehydrogenase/reductase 7. (339 aa) | ||||
MIOX | Myo-inositol oxygenase. (285 aa) | ||||
ADH1A | Alcohol dehydrogenase 1A, alpha polypeptide; Belongs to the zinc-containing alcohol dehydrogenase family. (375 aa) | ||||
HSD17B2 | Estradiol 17-beta-dehydrogenase 2; Capable of catalyzing the interconversion of testosterone and androstenedione, as well as estradiol and estrone. Also has 20-alpha- HSD activity. Uses NADH while EDH17B3 uses NADPH; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (387 aa) | ||||
HSD17B10 | 3-hydroxyacyl-CoA dehydrogenase type-2; Mitochondrial dehydrogenase that catalyzes the beta-oxidation at position 17 of androgens and estrogens and has 3-alpha- hydroxysteroid dehydrogenase activity with androsterone. Catalyzes the third step in the beta-oxidation of fatty acids. Carries out oxidative conversions of 7-alpha-OH and 7-beta-OH bile acids. Also exhibits 20-beta-OH and 21-OH dehydrogenase activities with C21 steroids. By interacting with intracellular amyloid-beta, it may contribute to the neuronal dysfunction associated with Alzheimer disease (AD). Essential for structural [...] (261 aa) | ||||
RDH8 | Retinol dehydrogenase 8; Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinal to all-trans-retinol. May play a role in the regeneration of visual pigment at high light intensity (By similarity). Belongs to the short-chain dehydrogenases/reductases (SDR) family. (331 aa) | ||||
AKR1C8P | Aldo-keto reductase family 1 member C8, pseudogene. (326 aa) | ||||
ABCC4 | Multidrug resistance-associated protein 4; May be an organic anion pump relevant to cellular detoxification; Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1325 aa) | ||||
KDSR | 3-ketodihydrosphingosine reductase; Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS); Belongs to the short-chain dehydrogenases/reductases (SDR) family. (332 aa) | ||||
PHGDH | D-3-phosphoglycerate dehydrogenase; Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L- serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate and the reversible oxidation of (S)-malate to oxaloacetate; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (533 aa) | ||||
IDH3B | Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial; Plays a structural role to facilitate the assembly and ensure the full activity of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. (387 aa) | ||||
DHRS11 | Dehydrogenase/reductase SDR family member 11; Catalyzes the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5-alpha-androstanes into their 17-beta- hydroxyl metabolites and the conversion of the 3-keto group of 3-, 3,17- and 3,20- diketosteroids into their 3-hydroxyl metabolites. Exhibits reductive 3-beta-hydroxysteroid dehydrogenase activity toward 5-beta-androstanes, 5-beta-pregnanes, 4-pregnenes and bile acids. May also reduce endogenous and exogenous alpha-dicarbonyl compounds and xenobiotic alicyclic ketones. (260 aa) | ||||
DHRS3 | Short-chain dehydrogenase/reductase 3; Catalyzes the reduction of all-trans-retinal to all-trans- retinol in the presence of NADPH. (302 aa) | ||||
SRD5A2 | 3-oxo-5-alpha-steroid 4-dehydrogenase 2; Converts testosterone (T) into 5-alpha-dihydrotestosterone (DHT) and progesterone or corticosterone into their corresponding 5- alpha-3-oxosteroids. It plays a central role in sexual differentiation and androgen physiology. (254 aa) | ||||
HADH | Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial; Plays an essential role in the mitochondrial beta-oxidation of short chain fatty acids. Exerts it highest activity toward 3- hydroxybutyryl-CoA; Belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (331 aa) | ||||
SDR42E2 | Short chain dehydrogenase/reductase family 42E, member 2; Belongs to the 3-beta-HSD family. (422 aa) | ||||
H6PD | GDH/6PGL endoplasmic bifunctional protein; Bifunctional enzyme localized in the lumen of the endoplasmic reticulum that catalyzes the first two steps of the oxidative branch of the pentose phosphate pathway/shunt, an alternative to glycolysis and a major source of reducing power and metabolic intermediates for biosynthetic processes (By similarity). Has a hexose-6-phosphate dehydrogenase activity, with broad substrate specificity compared to glucose-6-phosphate 1-dehydrogenase/G6PD, and catalyzes the first step of the pentose phosphate pathway. In addition, acts as a 6-phosphogluconola [...] (802 aa) | ||||
GMPR2 | GMP reductase 2; Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. Plays a role in modulating cellular differentiation. Belongs to the IMPDH/GMPR family. GuaC type 1 subfamily. (427 aa) | ||||
PTGR2 | Prostaglandin reductase 2; Functions as 15-oxo-prostaglandin 13-reductase and acts on 15-keto-PGE1, 15-keto-PGE2, 15-keto-PGE1-alpha and 15-keto-PGE2-alpha with highest activity towards 15-keto-PGE2. Overexpression represses transcriptional activity of PPARG and inhibits adipocyte differentiation (By similarity); Belongs to the NADP-dependent oxidoreductase L4BD family. (351 aa) | ||||
HSD17B6 | 17-beta-hydroxysteroid dehydrogenase type 6; NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17- beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3-alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro). Can convert androsterone to epi-androsterone. Androsterone is first oxidized to [...] (317 aa) | ||||
RDH12 | Retinol dehydrogenase 12; Retinoids dehydrogenase/reductase with a clear preference for NADP. Displays high activity towards 9-cis, 11-cis and all-trans- retinal. Shows very weak activity towards 13-cis-retinol. Also exhibits activity, albeit with lower affinity than for retinaldehydes, towards lipid peroxidation products (C9 aldehydes) such as 4-hydroxynonenal and trans-2-nonenal. May play an important function in photoreceptor cells to detoxify 4-hydroxynonenal and potentially other toxic aldehyde products resulting from lipid peroxidation. Has no dehydrogenase activity towards stero [...] (316 aa) | ||||
LDHA | Lactate dehydrogenase A; Belongs to the LDH/MDH superfamily. LDH family. (361 aa) | ||||
HSD3B2 | 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase type 2; 3-beta-HSD is a bifunctional enzyme, that catalyzes the oxidative conversion of Delta(5)-ene-3-beta-hydroxy steroid, and the oxidative conversion of ketosteroids. The 3-beta-HSD enzymatic system plays a crucial role in the biosynthesis of all classes of hormonal steroids. (372 aa) | ||||
ME3 | NADP-dependent malic enzyme, mitochondrial; Malic enzyme 3; Belongs to the malic enzymes family. (604 aa) | ||||
LDHC | L-lactate dehydrogenase C chain; Possible role in sperm motility. (332 aa) |