STRINGSTRING
GDA GDA ADAT2 ADAT2 ATIC ATIC AICDA AICDA APOBEC1 APOBEC1 APOBEC2 APOBEC2 CDADC1 CDADC1 ADAD2 ADAD2 ADAD1 ADAD1 APOBEC3F APOBEC3F ADAT1 ADAT1 APOBEC4 APOBEC4 APOBEC3B APOBEC3B DCTD DCTD ADARB1 ADARB1 APOBEC3C APOBEC3C ADAR ADAR ZBP1 ZBP1 ADA ADA CDA CDA ADARB2 ADARB2 MTHFD2 MTHFD2 MTHFD2L MTHFD2L AMPD3 AMPD3 ADA2 ADA2 APOBEC3A APOBEC3A APOBEC3G APOBEC3G APOBEC3D APOBEC3D APOBEC3H APOBEC3H LACC1 LACC1 AMPD1 AMPD1 ADAL ADAL GCH1 GCH1 MTHFD1 MTHFD1 AMPD2 AMPD2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
GDAGuanine deaminase; Catalyzes the hydrolytic deamination of guanine, producing xanthine and ammonia; Belongs to the metallo-dependent hydrolases superfamily. ATZ/TRZ family. (471 aa)
ADAT2tRNA-specific adenosine deaminase 2; Probably participates in deamination of adenosine-34 to inosine in many tRNAs. (191 aa)
ATICBifunctional purine biosynthesis protein PURH, N-terminally processed; Bifunctional enzyme that catalyzes 2 steps in purine biosynthesis; Belongs to the PurH family. (592 aa)
AICDASingle-stranded DNA cytosine deaminase; Single-stranded DNA-specific cytidine deaminase. Involved in somatic hypermutation (SHM), gene conversion, and class-switch recombination (CSR) in B-lymphocytes by deaminating C to U during transcription of Ig-variable (V) and Ig-switch (S) region DNA. Required for several crucial steps of B-cell terminal differentiation necessary for efficient antibody responses. May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation. (198 aa)
APOBEC1C->U-editing enzyme APOBEC-1; Catalytic component of the apolipoprotein B mRNA editing enzyme complex which is responsible for the postranscriptional editing of a CAA codon for Gln to a UAA codon for stop in the APOB mRNA. Also involved in CGA (Arg) to UGA (Stop) editing in the NF1 mRNA. May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation; Belongs to the cytidine and deoxycytidylate deaminase family. (236 aa)
APOBEC2C->U-editing enzyme APOBEC-2; Probable C to U editing enzyme whose physiological substrate is not yet known. Does not display detectable apoB mRNA editing. Has a low intrinsic cytidine deaminase activity. May play a role in the epigenetic regulation of gene expression through the process of active DNA demethylation. (224 aa)
CDADC1Cytidine and dCMP deaminase domain-containing protein 1; May play an important role in testicular development and spermatogenesis; Belongs to the cytidine and deoxycytidylate deaminase family. (514 aa)
ADAD2Adenosine deaminase domain containing 2. (665 aa)
ADAD1Adenosine deaminase domain-containing protein 1; Plays a role in spermatogenesis. Binds to RNA but not to DNA (By similarity). (576 aa)
APOBEC3FDNA dC->dU-editing enzyme APOBEC-3F; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. Exhibits antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels [...] (373 aa)
ADAT1tRNA-specific adenosine deaminase 1; Specifically deaminates adenosine-37 to inosine in tRNA-Ala. (502 aa)
APOBEC4Putative C->U-editing enzyme APOBEC-4; Putative C to U editing enzyme whose physiological substrate is not yet known. (367 aa)
APOBEC3BDNA dC->dU-editing enzyme APOBEC-3B; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels of mutations in the proviral genome, along with a deamin [...] (382 aa)
DCTDDeoxycytidylate deaminase; Supplies the nucleotide substrate for thymidylate synthetase. (189 aa)
ADARB1Double-stranded RNA-specific editase 1; Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependen [...] (741 aa)
APOBEC3CDNA dC->dU-editing enzyme APOBEC-3C; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels of mutations in the proviral genome, along with a deamin [...] (190 aa)
ADARDouble-stranded RNA-specific adenosine deaminase; Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structur [...] (1226 aa)
ZBP1Z-DNA-binding protein 1; Participates in the detection by the host's innate immune system of DNA from viral, bacterial or even host origin. Plays a role in host defense against tumors and pathogens. Acts as a cytoplasmic DNA sensor which, when activated, induces the recruitment of TBK1 and IRF3 to its C-terminal region and activates the downstream interferon regulatory factor (IRF) and NF-kappa B transcription factors, leading to type-I interferon production. ZBP1-induced NF-kappaB activation probably involves the recruitment of the RHIM containing kinases RIPK1 and RIPK3 (By similarity). (429 aa)
ADAAdenosine deaminase; Catalyzes the hydrolytic deamination of adenosine and 2- deoxyadenosine. Plays an important role in purine metabolism and in adenosine homeostasis. Modulates signaling by extracellular adenosine, and so contributes indirectly to cellular signaling events. Acts as a positive regulator of T-cell coactivation, by binding DPP4. Its interaction with DPP4 regulates lymphocyte-epithelial cell adhesion. Enhances dendritic cell immunogenicity by affecting dendritic cell costimulatory molecule expression and cytokines and chemokines secretion (By similarity). Enhances CD4+ T [...] (363 aa)
CDACytidine deaminase; This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis. (146 aa)
ADARB2Double-stranded RNA-specific editase B2; Lacks editing activity. It prevents the binding of other ADAR enzymes to targets in vitro, and decreases the efficiency of these enzymes. Capable of binding to dsRNA but also to ssRNA. (739 aa)
MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial; Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency. Belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (350 aa)
MTHFD2LProbable bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2; Methylenetetrahydrofolate dehydrogenase 2 like. (347 aa)
AMPD3AMP deaminase 3; AMP deaminase plays a critical role in energy metabolism; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. (776 aa)
ADA2Adenosine deaminase 2; Adenosine deaminase that may contribute to the degradation of extracellular adenosine, a signaling molecule that controls a variety of cellular responses. Requires elevated adenosine levels for optimal enzyme activity. Binds to cell surfaces via proteoglycans and may play a role in the regulation of cell proliferation and differentiation, independently of its enzyme activity. (511 aa)
APOBEC3ADNA dC->dU-editing enzyme APOBEC-3A; DNA deaminase (cytidine deaminase) with restriction activity against viruses, foreign DNA and mobility of retrotransposons. Exhibits antiviral activity against adeno-associated virus (AAV) and human T- cell leukemia virus type 1 (HTLV-1) and may inhibit the mobility of LTR and non-LTR retrotransposons. Selectively targets single-stranded DNA and can deaminate both methylcytosine and cytosine in foreign DNA. Can induce somatic hypermutation in the nuclear and mitochondrial DNA. May also play a role in the epigenetic regulation of gene expression thro [...] (199 aa)
APOBEC3GDNA dC->dU-editing enzyme APOBEC-3G; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. Exhibits potent antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental [...] (384 aa)
APOBEC3DDNA dC->dU-editing enzyme APOBEC-3D; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. Exhibits antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels [...] (386 aa)
APOBEC3HDNA dC->dU-editing enzyme APOBEC-3H; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. The A3H-var/haplotype 2 exhibits antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resu [...] (200 aa)
LACC1Laccase domain-containing protein 1; Central regulator of the metabolic function and bioenergetic state of macrophages. In macrophages, promotes flux through de novo lipogenesis to concomitantly drive high levels of both fatty-acid oxidation and glycolysis. (430 aa)
AMPD1AMP deaminase 1; AMP deaminase plays a critical role in energy metabolism; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deaminases family. (780 aa)
ADALAdenosine deaminase-like protein; Catalyzes the hydrolysis of the free cytosolic methylated adenosine nucleotide N(6)-methyl-AMP (N6-mAMP) to produce inositol monophosphate (IMP) and methylamine. Is required for the catabolism of cytosolic N6-mAMP, which is derived from the degradation of mRNA containing N6-methylated adenine (m6A). Catalyzes the removal of different alkyl groups not only from N6-substituted purine or 2-aminopurine nucleoside monophosphates but also from O6-substituted compounds in vitro ; Belongs to the metallo-dependent hydrolases superfamily. Adenosine and AMP deami [...] (355 aa)
GCH1GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. (250 aa)
MTHFD1C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (935 aa)
AMPD2AMP deaminase 2; AMP deaminase plays a critical role in energy metabolism. Catalyzes the deamination of AMP to IMP and plays an important role in the purine nucleotide cycle. (879 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]