Your Input: | |||||
| CACNG3 | Voltage-dependent calcium channel gamma-3 subunit; Regulates the trafficking to the somatodendritic compartment and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state. (315 aa) | ||||
| KCNQ1 | Potassium voltage-gated channel subfamily KQT member 1; Potassium channel that plays an important role in a number of tissues, including heart, inner ear, stomach and colon (By similarity). Associates with KCNE beta subunits that modulates current kinetics (By similarity). Induces a voltage-dependent by rapidly activating and slowly deactivating potassium-selective outward current (By similarity). Promotes also a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation participates in cardiac r [...] (676 aa) | ||||
| KCND1 | Potassium voltage-gated channel subfamily D member 1; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits; Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.1/KCND1 sub-subfamily. (647 aa) | ||||
| KCNA7 | Potassium voltage-gated channel subfamily A member 7; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient (By similarity). Belongs to the potassium channel family. A (Shaker) (TC 1.A.1.2) subfamily. Kv1.7/KCNA7 sub-subfamily. (456 aa) | ||||
| CACNG1 | Voltage-dependent calcium channel gamma-1 subunit; Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Regulates channel inactivation kinetics; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. (222 aa) | ||||
| KCNJ13 | Inward rectifier potassium channel 13; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ13 has a very low single channel conductance, low sensitivity to block by external barium and cesium, and no dependen [...] (360 aa) | ||||
| PKD2 | Polycystin-2; Component of a heteromeric calcium-permeable ion channel formed by PKD1 and PKD2 that is activated by interaction between PKD1 and a Wnt family member, such as WNT3A and WNT9B. Can also form a functional, homotetrameric ion channel. Functions as a cation channel involved in fluid-flow mechanosensation by the primary cilium in renal epithelium. Functions as outward-rectifying K(+) channel, but is also permeable to Ca(2+), and to a much lesser degree also to Na(+). May contribute to the release of Ca(2+) stores from the endoplasmic reticulum. Together with TRPV4, forms mech [...] (968 aa) | ||||
| KCNJ2 | Inward rectifier potassium channel 2; Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be bl [...] (427 aa) | ||||
| HCN2 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2; Hyperpolarization-activated ion channel exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) and in neurons (Ih). Can also transport ammonium in the distal nephron. Produces a large instantaneous current. Modulated by intracellular chloride ions and pH; acidic pH shifts the activation to more negative voltages (By similarity). (889 aa) | ||||
| KCNA5 | Potassium voltage-gated channel subfamily A member 5; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...] (613 aa) | ||||
| CACNG6 | Voltage-dependent calcium channel gamma-6 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. (260 aa) | ||||
| SNAP25 | Synaptosomal-associated protein 25; t-SNARE involved in the molecular regulation of neurotransmitter release. May play an important role in the synaptic function of specific neuronal systems. Associates with proteins involved in vesicle docking and membrane fusion. Regulates plasma membrane recycling through its interaction with CENPF. Modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1 in pancreatic beta cells. Belongs to the SNAP-25 family. (206 aa) | ||||
| KCNH3 | Potassium voltage-gated channel subfamily H member 3; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits an outward current with fast inactivation. Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv12.2/KCNH3 sub-subfamily. (1083 aa) | ||||
| ITGAV | Integrin alpha-V heavy chain; The alpha-V (ITGAV) integrins are receptors for vitronectin, cytotactin, fibronectin, fibrinogen, laminin, matrix metalloproteinase- 2, osteopontin, osteomodulin, prothrombin, thrombospondin and vWF. They recognize the sequence R-G-D in a wide array of ligands. ITGAV:ITGB3 binds to fractalkine (CX3CL1) and may act as its coreceptor in CX3CR1- dependent fractalkine signaling. ITGAV:ITGB3 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling. ITGAV:ITGB3 binds to FGF1 and this binding is essential for FGF1 signaling. ITGAV:ITGB [...] (1048 aa) | ||||
| HCN4 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4; Hyperpolarization-activated ion channel with very slow activation and inactivation exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) that regulate the rhythm of heart beat. May contribute to the native pacemaker currents in neurons (Ih). May mediate responses to sour stimuli. (1203 aa) | ||||
| CACNG4 | Voltage-dependent calcium channel gamma-4 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit. Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs), including GRIA1 and GRIA4. Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. (327 aa) | ||||
| KCNH2 | Potassium voltage-gated channel subfamily H member 2; Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel. Channel properties are modulated by cAMP and subunit assembly. Mediates the rapidly activating component of the delayed rectifying potassium current in heart (IKr). [Isoform B-USO]: Has no channel activity by itself, but modulates channel characteristics by forming heterotetramers with other isoforms which are retained intracellularly and undergo ubiquitin- dependent degradation. (1159 aa) | ||||
| KCNQ4 | Potassium voltage-gated channel subfamily KQT member 4; Probably important in the regulation of neuronal excitability. May underlie a potassium current involved in regulating the excitability of sensory cells of the cochlea. KCNQ4 channels are blocked by linopirdin, XE991 and bepridil, whereas clofilium is without significant effect. Muscarinic agonist oxotremorine-M strongly suppress KCNQ4 current in CHO cells in which cloned KCNQ4 channels were coexpressed with M1 muscarinic receptors. (695 aa) | ||||
| GRIN2D | Glutamate receptor ionotropic, NMDA 2D; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. Belongs to the glutamate-gated ion channel (TC 1.A.10.1) family. NR2D/GRIN2D subfamily. (1336 aa) | ||||
| KCNK6 | Potassium channel subfamily K member 6; Exhibits outward rectification in a physiological K(+) gradient and mild inward rectification in symmetrical K(+) conditions; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (313 aa) | ||||
| KCNH4 | Potassium voltage-gated channel subfamily H member 4; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits an outward current, but shows no inactivation. Channel properties may be modulated by cAMP and subunit assembly. (1017 aa) | ||||
| KCNN2 | Small conductance calcium-activated potassium channel protein 2; Forms a voltage-independent potassium channel activated by intracellular calcium. Activation is followed by membrane hyperpolarization. Thought to regulate neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization. The channel is blocked by apamin; Belongs to the potassium channel KCNN family. KCa2.2/KCNN2 subfamily. (579 aa) | ||||
| KCNC1 | Potassium voltage-gated channel subfamily C member 1; Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons. The channel opens in response to the voltage difference across the membrane, forming a potassium-selective channel through which potassium ions pass in accordance with their electrochemical gradient. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNC2, and possibly other family members as well. Contributes to fire sustained trains of very brief action [...] (585 aa) | ||||
| CACNA1C | Voltage-dependent L-type calcium channel subunit alpha-1C; Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm (By similarity). Plays an important role in excitation-contraction coupling in the heart. Required for normal heart development and normal regulation of heart rhythm. Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essential for normal blood pressure regulation via [...] (2186 aa) | ||||
| CACNG8 | Voltage-dependent calcium channel gamma-8 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit (By similarity). Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Belongs to the PMP-22/EMP/MP20 fami [...] (425 aa) | ||||
| KCNH1 | Potassium voltage-gated channel subfamily H member 1; Pore-forming (alpha) subunit of a voltage-gated delayed rectifier potassium channel. Channel properties are modulated by subunit assembly. Mediates IK(NI) current in myoblasts. Involved in the regulation of cell proliferation and differentiation, in particular adipogenic and osteogenic differentiation in bone marrow-derived mesenchymal stem cells (MSCs). Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv10.1/KCNH1 sub-subfamily. (989 aa) | ||||
| SCN2B | Sodium channel subunit beta-2; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity); Belongs to the sodium channel auxiliary subunit SCN2B (TC 8.A.17) family. (215 aa) | ||||
| KCNA6 | Potassium voltage-gated channel subfamily A member 6; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA6, and possibly other family members as well [...] (529 aa) | ||||
| KCNE4 | Potassium voltage-gated channel subfamily E member 4; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. May associate with KCNQ1/KVLTQ1 and inhibit potassium current; Belongs to the potassium channel KCNE family. (221 aa) | ||||
| KCNK13 | Potassium channel subfamily K member 13; Potassium channel displaying weak inward rectification in symmetrical K(+) solution; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (408 aa) | ||||
| CATSPER3 | Cation channel sperm-associated protein 3; Voltage-gated calcium channel that plays a central role in calcium-dependent physiological responses essential for successful fertilization, such as sperm hyperactivation, acrosome reaction and chemotaxis towards the oocyte. (398 aa) | ||||
| KCNMA1 | Calcium-activated potassium channel subunit alpha-1; Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in t [...] (1236 aa) | ||||
| KCNS2 | Potassium voltage-gated channel subfamily S member 2; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1 and KCNB2; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 and KCNB2. (477 aa) | ||||
| CACNA1D | Voltage-dependent L-type calcium channel subunit alpha-1D; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzothiazepines. B [...] (2181 aa) | ||||
| CACHD1 | VWFA and cache domain-containing protein 1; May regulate voltage-dependent calcium channels. (1223 aa) | ||||
| KCNE2 | Potassium voltage-gated channel subfamily E member 2; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNH2/HERG is proposed to form the rapidly activating component of the delayed rectifying potassium current in heart (IKr). May associate with KCNQ2 and/or KCNQ3 and modulate the native M-t [...] (123 aa) | ||||
| GRIN2C | Glutamate receptor ionotropic, NMDA 2C; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition (Probable). Plays a role in regulating the balance between excitatory and inhibitory activit [...] (1233 aa) | ||||
| TPCN2 | Two pore calcium channel protein 2; Nicotinic acid adenine dinucleotide phosphate (NAADP) receptor that may function as one of the major voltage-gated Ca(2+) channels (VDCC) across the lysosomal membrane. May be involved in smooth muscle contraction; Belongs to the calcium channel alpha-1 subunit (TC 1.A.1.11) family. Two pore calcium channel subfamily. (752 aa) | ||||
| KCNT2 | Potassium channel subfamily T member 2; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. Activated by high intracellular sodium and chloride levels. Channel activity is inhibited by ATP and by inhalation anesthetics, such as isoflurane (By similarity). Inhibited upon stimulation of G-protein coupled receptors, such as CHRM1 and GRM1. (1135 aa) | ||||
| LRRC52 | Leucine-rich repeat-containing protein 52; Auxiliary protein of the large-conductance, voltage and calcium-activated potassium channel (BK alpha). Modulates gating properties by producing a marked shift in the BK channel's voltage dependence of activation in the hyperpolarizing direction, and in the absence of calcium. KCNU1 channel auxiliary protein. May modulate KCNU1 gating properties. (313 aa) | ||||
| KCNF1 | Potassium voltage-gated channel subfamily F member 1; Putative voltage-gated potassium channel. (494 aa) | ||||
| KCNJ3 | G protein-activated inward rectifier potassium channel 1; This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This receptor plays a crucial role in regulating t [...] (501 aa) | ||||
| CACNG2 | Voltage-dependent calcium channel gamma-2 subunit; Regulates the trafficking and gating properties of AMPA- selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state; Belongs to the PMP-22/EMP/MP20 family. CACNG subfamily. (323 aa) | ||||
| CACNB3 | Voltage-dependent L-type calcium channel subunit beta-3; Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. Increases CACNA1B peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). Increases CACNA1C peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). (484 aa) | ||||
| KCNAB3 | Voltage-gated potassium channel subunit beta-3; Accessory potassium channel protein which modulates the activity of the pore-forming alpha subunit. Alters the functional properties of Kv1.5. (404 aa) | ||||
| KCNG3 | Potassium voltage-gated channel subfamily G member 3; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; this promotes a reduction in the rate of activation and inactivation of the delayed rectifier voltage- gated potassium channel KCNB1. Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.3/KCNG3 sub-subfamily. (436 aa) | ||||
| KCNK3 | Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (394 aa) | ||||
| KCNJ4 | Inward rectifier potassium channel 4; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium and cesium (By similarity); Belongs to the inward rectifier-type potassium channel [...] (445 aa) | ||||
| HCN1 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1; Hyperpolarization-activated ion channel exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) and in neurons (Ih). May mediate responses to sour stimuli. (890 aa) | ||||
| CATSPER1 | Cation channel sperm-associated protein 1; Voltage-gated calcium channel that plays a central role in calcium-dependent physiological responses essential for successful fertilization, such as sperm hyperactivation, acrosome reaction and chemotaxis towards the oocyte. (780 aa) | ||||
| KCNE3 | Potassium voltage-gated channel subfamily E member 3; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Associated with KCNC4/Kv3.4 is proposed to form the subthreshold voltage-gated potassium channel in skeletal muscle and to establish the resting membrane potential (RMP) in muscle cells. Associated with KC [...] (103 aa) | ||||
| KCNG4 | Potassium voltage-gated channel subfamily G member 4; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.4/KCNG4 sub-subfamily. (519 aa) | ||||
| KCNK10 | Potassium channel subfamily K member 10; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. Activated by arachidonic acid and other naturally occurring unsaturated free fatty acids; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (543 aa) | ||||
| KCNG2 | Potassium voltage-gated channel subfamily G member 2; Potassium channel subunit. Modulates channel activity by shifting the threshold and the half-maximal activation to more negative values; Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.2/KCNG2 sub-subfamily. (466 aa) | ||||
| KCND3 | Potassium voltage-gated channel subfamily D member 3; Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits. Belongs to the potassium channel family. D (Shal) (TC 1.A.1.2) subfamily. Kv4.3/KCND3 sub-subfamily. (655 aa) | ||||
| CACNB2 | Voltage-dependent L-type calcium channel subunit beta-2; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. (660 aa) | ||||
| KCNH5 | Potassium voltage-gated channel subfamily H member 5; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a non-inactivating outward rectifying current. Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv10.2/KCNH5 sub-subfamily. (988 aa) | ||||
| KCNK12 | Potassium channel subfamily K member 12; Probable potassium channel subunit. No channel activity observed in heterologous systems. May need to associate with another protein to form a functional channel (By similarity). (430 aa) | ||||
| KCNA4 | Potassium voltage-gated channel subfamily A member 4; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...] (653 aa) | ||||
| KCNH8 | Potassium voltage-gated channel subfamily H member 8; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a slowly activating, outward rectifying current. Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv12.1/KCNH8 sub-subfamily. (1107 aa) | ||||
| CALHM1 | Calcium homeostasis modulator protein 1; Pore-forming subunit of a voltage-gated ion channel required for sensory perception of sweet, bitter and umami tastes (By similarity). Specifically present in type II taste bud cells, where it plays a central role in sweet, bitter and umami taste perception by inducing ATP release from the cell, ATP acting as a neurotransmitter to activate afferent neural gustatory pathways (By similarity). Together with CALHM3, forms a fast-activating voltage-gated ATP-release channel in type II taste bud cells (TBCs) (By similarity). Acts both as a voltage-gat [...] (346 aa) | ||||
| KCNH7 | Potassium voltage-gated channel subfamily H member 7; Pore-forming (alpha) subunit of voltage-gated potassium channel. Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv11.3/KCNH7 sub-subfamily. (1196 aa) | ||||
| GRIN2A | Glutamate receptor ionotropic, NMDA 2A; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition; channels containing GRIN1 and GRIN2A have higher sensitivity to glutamate and faster kineti [...] (1464 aa) | ||||
| KCND2 | Potassium voltage-gated channel subfamily D member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action pote [...] (630 aa) | ||||
| CACNA1H | Voltage-dependent T-type calcium channel subunit alpha-1H; Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation. T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons. In t [...] (2353 aa) | ||||
| KCNK18 | Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...] (384 aa) | ||||
| KCNK7 | Potassium channel subfamily K member 7; Probable potassium channel subunit. No channel activity observed in vitro as protein remains in the endoplasmic reticulum. May need to associate with an as yet unknown partner in order to reach the plasma membrane; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family. (307 aa) | ||||
| KCNQ5 | Potassium voltage-gated channel subfamily KQT member 5; Associates with KCNQ3 to form a potassium channel which contributes to M-type current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons. Therefore, it is important in the regulation of neuronal excitability. May contribute, with other potassium channels, to the molecular diversity of a heterogeneous population of M-channels, varying in kinetic and pharmacological properties, which underlie this physiologically important current [...] (951 aa) | ||||
| KCNJ11 | ATP-sensitive inward rectifier potassium channel 11; This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium (By similarity). Subunit [...] (390 aa) | ||||
| TSPOAP1 | Peripheral-type benzodiazepine receptor-associated protein 1; TSPO associated protein 1; Belongs to the RIMBP family. (1857 aa) | ||||
| HVCN1 | Voltage-gated hydrogen channel 1; Mediates the voltage-dependent proton permeability of excitable membranes. Forms a proton-selective channel through which protons may pass in accordance with their electrochemical gradient. Proton efflux, accompanied by membrane depolarization, facilitates acute production of reactive oxygen species in phagocytosis. (273 aa) | ||||
| CACNA2D1 | Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation- contraction coupling (By similarity). (1091 aa) | ||||
| TMC2 | Transmembrane channel-like protein 2; Probable ion channel required for the normal function of cochlear hair cells. Component of the hair cell's mechanotransduction (MET) machinery. Involved in mechanosensitive responses of the hair cells (By similarity). (906 aa) | ||||
| CACNA1G | Voltage-dependent T-type calcium channel subunit alpha-1G; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1G gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by mibefradil. A particularity of this type of channel is an opening at quite neg [...] (2377 aa) | ||||
| KCNQ2 | Potassium voltage-gated channel subfamily KQT member 2; Associates with KCNQ3 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. KCNQ2/KCNQ3 current is blocked by linopirdine and XE991, and activated by the anticonvulsant retigabine. As the native M-chan [...] (872 aa) | ||||
| KCNK5 | Potassium channel subfamily K member 5; pH-dependent, voltage insensitive, outwardly rectifying potassium channel. Outward rectification is lost at high external K(+) concentrations. (499 aa) | ||||
| RYR1 | Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm. Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for nor [...] (5038 aa) | ||||
| GRIN3A | Glutamate receptor ionotropic, NMDA 3A; NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May play a role in PPP2CB-NMDAR mediated signaling mechanism (By similarity). (1115 aa) | ||||
| CACNA1S | Voltage-dependent L-type calcium channel subunit alpha-1S; Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. (1873 aa) | ||||
| KCNK1 | Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...] (336 aa) | ||||
| CACNA1E | Voltage-dependent R-type calcium channel subunit alpha-1E; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells. They are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1E gives rise to R-type calcium currents. R-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by nickel. They are however insensitive to dihydropyridines (DHP). Calcium channels con [...] (2313 aa) | ||||
| KCNJ9 | G protein-activated inward rectifier potassium channel 3; This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium (By similarity); Belongs to the inward rectifier-type potass [...] (393 aa) | ||||
| HCN3 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3; Hyperpolarization-activated potassium channel. May also facilitate the permeation of sodium ions. (774 aa) | ||||
| CNR1 | Cannabinoid receptor 1; G-protein coupled receptor for endogenous cannabinoids (eCBs), including N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG), as well as phytocannabinoids, such as delta(9)-tetrahydrocannabinol (THC). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP. In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agon [...] (472 aa) | ||||
| KCNA3 | Potassium voltage-gated channel subfamily A member 3; Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. (575 aa) | ||||
| KCNA10 | Potassium voltage-gated channel subfamily A member 10; Mediates voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. The channel activity is up-regulated by cAMP; Belongs to the potassium channel family. A (Shaker) (TC 1.A.1.2) subfamily. Kv1.8/KCNA10 sub-subfamily. (511 aa) | ||||
| KCNC4 | Potassium voltage-gated channel subfamily C member 4; This protein mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. (635 aa) | ||||
| HTR1B | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] (390 aa) | ||||
| CACNA1B | Voltage-dependent N-type calcium channel subunit alpha-1B; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1B gives rise to N-type calcium currents. N-type calcium channels belong to the 'high-voltage activated' (HVA) group and are specifically blocked by omega-conotoxin- GVIA (AC P01522) (AC P01522) (By similarity). They are h [...] (2339 aa) | ||||
| LRRC26 | Leucine-rich repeat-containing protein 26; Auxiliary protein of the large-conductance, voltage and calcium-activated potassium channel (BK alpha). Required for the conversion of BK alpha channels from a high-voltage to a low-voltage activated channel type in non-excitable cells. These are characterized by negative membrane voltages and constant low levels of calcium. (334 aa) | ||||
| GRIN1 | Glutamate receptor ionotropic, NMDA 1; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. (943 aa) | ||||
| KCNG1 | Potassium voltage-gated channel subfamily G member 1; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Belongs to the potassium channel family. G (TC 1.A.1.2) subfamily. Kv6.1/KCNG1 sub-subfamily. (513 aa) | ||||
| KCNB1 | Potassium voltage-gated channel subfamily B member 1; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain, but also in the pancreas and cardiovascular system. Contributes to the regulation of the action potential (AP) repolarization, duration and frequency of repetitive AP firing in neurons, muscle cells and endocrine cells and plays a role in homeostatic attenuation of electrical excitability throughout the brain. Plays also a role in the regulation of exocytosis independently of its electrical function (By sim [...] (858 aa) | ||||
| KCNT1 | Potassium channel subfamily T member 1; Outwardly rectifying potassium channel subunit that may coassemble with other Slo-type channel subunits. Activated by high intracellular sodium or chloride levels. Activated upon stimulation of G-protein coupled receptors, such as CHRM1 and GRIA1. May be regulated by calcium in the absence of sodium ions (in vitro) (By similarity). Belongs to the potassium channel family. Calcium-activated (TC 1.A.1.3) subfamily. KCa4.1/KCNT1 sub-subfamily. (1235 aa) | ||||
| KCNE5 | Potassium voltage-gated channel subfamily E regulatory beta subunit 5; Potassium channel ancillary subunit that is essential for generation of some native K(+) currents by virtue of formation of heteromeric ion channel complex with voltage-gated potassium (Kv) channel pore-forming alpha subunits. Functions as an inhibitory beta- subunit of the repolarizing cardiac potassium ion channel KCNQ1. (142 aa) | ||||
| NCS1 | Neuronal calcium sensor 1; Neuronal calcium sensor, regulator of G protein-coupled receptor phosphorylation in a calcium dependent manner. Directly regulates GRK1 (RHOK), but not GRK2 to GRK5. Can substitute for calmodulin (By similarity). Stimulates PI4KB kinase activity (By similarity). Involved in long-term synaptic plasticity through its interaction with PICK1 (By similarity). May also play a role in neuron differentiation through inhibition of the activity of N-type voltage- gated calcium channel (By similarity); Belongs to the recoverin family. (190 aa) | ||||
| KCNK17 | Potassium channel subfamily K member 17; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. (332 aa) | ||||
| LRRC38 | Leucine-rich repeat-containing protein 38; Auxiliary protein of the large-conductance, voltage and calcium-activated potassium channel (BK alpha). Modulates gating properties by producing a marked shift in the BK channel's voltage dependence of activation in the hyperpolarizing direction, and in the absence of calcium. (294 aa) | ||||
| CACNA1F | Voltage-dependent L-type calcium channel subunit alpha-1F; [Isoform 1]: Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1F gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, and by benzot [...] (1977 aa) | ||||
| KCNAB2 | Voltage-gated potassium channel subunit beta-2; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Contributes to the regulation of nerve signaling, and prevents neuronal hyperexcitability (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Promotes potassium channel closure via a mechanism that does not involve physical obstruction of the channel pore. Promotes KCNA4 channel closure. Modulates the functional properties of KCNA5 [...] (415 aa) | ||||
| KCNV2 | Potassium voltage-gated channel subfamily V member 2; Potassium channel subunit. Modulates channel activity by shifting the threshold and the half-maximal activation to more negative values; Belongs to the potassium channel family. V (TC 1.A.1.2) subfamily. Kv8.2/KCNV2 sub-subfamily. (545 aa) | ||||
| KCNA1 | Potassium voltage-gated channel subfamily A member 1; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the kidney. Contributes to the regulation of the membrane potential and nerve signaling, and prevents neuronal hyperexcitability. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference acros [...] (495 aa) | ||||
| CACNA2D4 | Voltage-dependent calcium channel subunit alpha-2/delta-4; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. (1137 aa) | ||||
| KCNQ3 | Potassium voltage-gated channel subfamily KQT member 3; Associates with KCNQ2 or KCNQ5 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. (872 aa) | ||||
| CACNG7 | Voltage-dependent calcium channel gamma-7 subunit; Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit. Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity only for GRIA1 and GRIA2. Belongs to the PMP-22/EMP/MP20 family. CACNG [...] (275 aa) | ||||
| KCNJ14 | ATP-sensitive inward rectifier potassium channel 14; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ14 gives rise to low-conductance channels with a low affinity to the channel blockers Barium and Cesium [...] (436 aa) | ||||
| KCNJ1 | ATP-sensitive inward rectifier potassium channel 1; In the kidney, probably plays a major role in potassium homeostasis. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This channel is activated by internal A [...] (391 aa) | ||||
| CACNB1 | Voltage-dependent L-type calcium channel subunit beta-1; Regulatory subunit of L-type calcium channels. Regulates the activity of L-type calcium channels that contain CACNA1A as pore- forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane. Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit. Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit. (598 aa) | ||||
| PTK2B | Protein-tyrosine kinase 2-beta; Non-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promot [...] (1009 aa) | ||||
| KCNJ15 | ATP-sensitive inward rectifier potassium channel 15; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium; Belongs to the inward rectifier-type potassium channel (TC 1.A.2.1) family. KCNJ15 subfamily. (375 aa) | ||||
| KCNE1 | Potassium voltage-gated channel subfamily E member 1; Ancillary protein that assembles as a beta subunit with a voltage-gated potassium channel complex of pore-forming alpha subunits. Modulates the gating kinetics and enhances stability of the channel complex. Assembled with KCNB1 modulates the gating characteristics of the delayed rectifier voltage-dependent potassium channel KCNB1. Assembled with KCNQ1/KVLQT1 is proposed to form the slowly activating delayed rectifier cardiac potassium (IKs) channel. The outward current reaches its steady state only after 50 seconds. Assembled with K [...] (129 aa) | ||||
| CACNA1I | Voltage-dependent T-type calcium channel subunit alpha-1I; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite [...] (2223 aa) | ||||
| KCNS3 | Potassium voltage-gated channel subfamily S member 3; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1. Heterotetrameric channel activity formed with KCNB1 show increased current amplitude with the threshold for action potential activation shifted towards more negative values in hypoxic-treated pulmonary artery smooth muscle cells (By similarity). (491 aa) | ||||
| CATSPER4 | Cation channel sperm-associated protein 4; Voltage-gated calcium channel that plays a central role in calcium-dependent physiological responses essential for successful fertilization, such as sperm hyperactivation, acrosome reaction and chemotaxis towards the oocyte; Belongs to the cation channel sperm-associated (TC 1.A.1.19) family. (472 aa) | ||||
| KCNK16 | Potassium channel subfamily K member 16; Outward rectifying potassium channel. Produces rapidly activating and non-inactivating outward rectifier K(+) currents. (322 aa) | ||||
| KCNK2 | Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...] (426 aa) | ||||
| OPRM1 | Mu-type opioid receptor; Receptor for endogenous opioids such as beta-endorphin and endomorphin. Receptor for natural and synthetic opioids including morphine, heroin, DAMGO, fentanyl, etorphine, buprenorphin and methadone. Agonist binding to the receptor induces coupling to an inactive GDP-bound heterotrimeric G-protein complex and subsequent exchange of GDP for GTP in the G-protein alpha subunit leading to dissociation of the G-protein complex with the free GTP-bound G-protein alpha and the G-protein beta-gamma dimer activating downstream cellular effectors. The agonist- and cell typ [...] (493 aa) | ||||
| KCNK4 | Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the perception of pain caused by heat (By similarity). Plays a ro [...] (393 aa) | ||||
| CACNA2D2 | Voltage-dependent calcium channel subunit alpha-2/delta-2; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q- type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) and possibly T-type (CACNA1G). Overexpression induces apoptosis. (1150 aa) | ||||
| CACNA2D3 | Voltage-dependent calcium channel subunit alpha-2/delta-3; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q- type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) but not T-type (CACNA1G) (By similarity). (1091 aa) | ||||
| CDK5 | Cyclin-dependent-like kinase 5; Proline-directed serine/threonine-protein kinase essential for neuronal cell cycle arrest and differentiation and may be involved in apoptotic cell death in neuronal diseases by triggering abortive cell cycle re-entry. Interacts with D1 and D3-type G1 cyclins. Phosphorylates SRC, NOS3, VIM/vimentin, p35/CDK5R1, MEF2A, SIPA1L1, SH3GLB1, PXN, PAK1, MCAM/MUC18, SEPT5, SYN1, DNM1, AMPH, SYNJ1, CDK16, RAC1, RHOA, CDC42, TONEBP/NFAT5, MAPT/TAU, MAP1B, histone H1, p53/TP53, HDAC1, APEX1, PTK2/FAK1, huntingtin/HTT, ATM, MAP2, NEFH and NEFM. Regulates several neu [...] (292 aa) | ||||
| KCNAB1 | Voltage-gated potassium channel subunit beta-1; Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits. Modulates action potentials via its effect on the pore-forming alpha subunits (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members. Promotes the clos [...] (419 aa) | ||||
| KCNB2 | Potassium voltage-gated channel subfamily B member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric an [...] (911 aa) | ||||
| KCNJ5 | G protein-activated inward rectifier potassium channel 4; This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by external barium. Belongs to the [...] (419 aa) | ||||
| KCNC3 | Potassium voltage-gated channel subfamily C member 3; Voltage-gated potassium channel that plays an important role in the rapid repolarization of fast-firing brain neurons. The channel opens in response to the voltage difference across the membrane, forming a potassium-selective channel through which potassium ions pass in accordance with their electrochemical gradient. The channel displays rapid activation and inactivation kinetics. It plays a role in the regulation of the frequency, shape and duration of action potentials in Purkinje cells. Required for normal survival of cerebellar [...] (757 aa) | ||||
| KCNV1 | Potassium voltage-gated channel subfamily V member 1; Potassium channel subunit that does not form functional channels by itself. Modulates KCNB1 and KCNB2 channel activity by shifting the threshold for inactivation to more negative values and by slowing the rate of inactivation. Can down-regulate the channel activity of KCNB1, KCNB2, KCNC4 and KCND1, possibly by trapping them in intracellular membranes. (500 aa) | ||||
| CACNG5 | Voltage-dependent calcium channel gamma-5 subunit; Regulates the gating properties of AMPA-selective glutamate receptors (AMPARs). Modulates their gating properties by accelerating their rates of activation, deactivation and desensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity for GRIA1, GRIA4 and the long isoform of GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity). (275 aa) | ||||
| CACNB4 | Voltage-dependent L-type calcium channel subunit beta-4; The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting. (520 aa) | ||||
| KCNS1 | Potassium voltage-gated channel subfamily S member 1; Potassium channel subunit that does not form functional channels by itself. Can form functional heterotetrameric channels with KCNB1 and KCNB2; modulates the delayed rectifier voltage-gated potassium channel activation and deactivation rates of KCNB1 and KCNB2. (526 aa) | ||||
| KCNC2 | Potassium voltage-gated channel subfamily C member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Contributes to the regulation of the fast action potential repolarization and in sustained high-frequency firing in neurons of the central nervous system. Homotetramer channels mediate delayed-rectifier voltage-dependent potassium currents that activate rapidly at high- threshold voltages and inactivate slowly. Forms tetrameric channels through which potassium ions pass in accordance with their electrochemi [...] (638 aa) | ||||
| ASPG | 1-alkyl-2-acetylglycerophosphocholine esterase; Exhibits lysophospholipase, transacylase, PAF acetylhydrolase and asparaginase activities (By similarity). Can catalyze three types of transacylation reactions: (1) acyl transfer from 1-acyl-sn-glycero- 3-phosphocholine (1-acyl-GPC) to the sn-1(3) positions of glycerol and 2-acylglycerol (sn-1 to -1(3) transfer), (2) acyl transfer from 1-acyl- GPC to the sn-2 positions of 1-acyl-GPC, 1-acyl-sn-glycero-3- phosphoethanolamine (1-acyl-GPE), and other lysophospholipids (sn-1 to -2 transfer) and (3) acyl transfer from 2-acyl-GPC to the sn-1 po [...] (573 aa) | ||||
| KCNJ18 | Inward rectifier potassium channel 18; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium; Belongs to the inward rectifier-type potassium channel (TC 1.A.2.1) family. KCNJ12 subfamily. (433 aa) | ||||
| TRPV1 | Transient receptor potential cation channel subfamily V member 1; Ligand-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. Involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL. Activation by vanilloids, like capsaicin, and temperatures higher than 42 degrees Celsius, exhibits [...] (839 aa) | ||||
| KCNH6 | Potassium voltage-gated channel subfamily H member 6; Pore-forming (alpha) subunit of voltage-gated potassium channel. Elicits a slowly activating, rectifying current (By similarity). Channel properties may be modulated by cAMP and subunit assembly; Belongs to the potassium channel family. H (Eag) (TC 1.A.1.20) subfamily. Kv11.2/KCNH6 sub-subfamily. (994 aa) | ||||
| KCNJ12 | ATP-sensitive inward rectifier potassium channel 12; Inward rectifying potassium channel that is activated by phosphatidylinositol 4,5-bisphosphate and that probably participates in controlling the resting membrane potential in electrically excitable cells. Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potas [...] (433 aa) | ||||
| KCNJ16 | Inward rectifier potassium channel 16; Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ16 may be involved in the regulation of fluid and pH balance. In the kidney, together with KCNJ10, mediates basolater [...] (453 aa) | ||||
| KCNN1 | Small conductance calcium-activated potassium channel protein 1; Forms a voltage-independent potassium channel activated by intracellular calcium. Activation is followed by membrane hyperpolarization. Thought to regulate neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization. The channel is blocked by apamin (By similarity); Belongs to the potassium channel KCNN family. KCa2.1/KCNN1 subfamily. (543 aa) | ||||
| KCNJ6 | G protein-activated inward rectifier potassium channel 2; This potassium channel may be involved in the regulation of insulin secretion by glucose and/or neurotransmitters acting through G- protein-coupled receptors. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due t [...] (423 aa) | ||||
| GRIN2B | Glutamate receptor ionotropic, NMDA 2B; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. [...] (1484 aa) | ||||
| KCNE1B | Potassium voltage-gated channel subfamily E regulatory subunit 1B. (132 aa) | ||||
| KCNN3 | Small conductance calcium-activated potassium channel protein 3; Forms a voltage-independent potassium channel activated by intracellular calcium. Activation is followed by membrane hyperpolarization. Thought to regulate neuronal excitability by contributing to the slow component of synaptic afterhyperpolarization. The channel is blocked by apamin; Belongs to the potassium channel KCNN family. KCa2.3/KCNN3 subfamily. (746 aa) | ||||
| KCNA2 | Potassium voltage-gated channel subfamily A member 2; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form funct [...] (499 aa) | ||||
| CACNA1A | Voltage-dependent P/Q-type calcium channel subunit alpha-1A; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1A gives rise to P and/or Q- type calcium currents. P/Q-type calcium channels belong to the 'high- voltage activated' (HVA) group and are specifically blocked by the spider omega-agatoxin-IVA (AC P54282) (By similarity). [...] (2512 aa) | ||||
| KCNH1-2 | Potassium voltage-gated channel subfamily H member 1. (95 aa) | ||||
| ENSP00000492303 | PAS domain-containing protein. (482 aa) | ||||
| ABCC8 | ATP-binding cassette sub-family C member 8; Subunit of the beta-cell ATP-sensitive potassium channel (KATP). Regulator of ATP-sensitive K(+) channels and insulin release. Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1603 aa) | ||||
| TMC1 | Transmembrane channel-like protein 1; Probable ion channel required for the normal function of cochlear hair cells; Belongs to the TMC family. (760 aa) | ||||
| KCNJ10 | ATP-sensitive inward rectifier potassium channel 10; May be responsible for potassium buffering action of glial cells in the brain. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellu [...] (379 aa) | ||||
| KCNK9 | Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein. (374 aa) | ||||
| LRRC55 | Leucine-rich repeat-containing protein 55; Auxiliary protein of the large-conductance, voltage and calcium-activated potassium channel (BK alpha). Modulates gating properties by producing a marked shift in the BK channel's voltage dependence of activation in the hyperpolarizing direction, and in the absence of calcium. (341 aa) | ||||
| KCNJ8 | ATP-sensitive inward rectifier potassium channel 8; This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by external barium (By similarity). Belon [...] (424 aa) | ||||