STRINGSTRING
NDST4 NDST4 ENSP00000495266 ENSP00000495266 DSE DSE FOXC1 FOXC1 ST3GAL3 ST3GAL3 CHST12 CHST12 CHST9 CHST9 ST3GAL6 ST3GAL6 HEXA HEXA ST3GAL4 ST3GAL4 HS6ST2 HS6ST2 ST3GAL1 ST3GAL1 ANGPT1 ANGPT1 HS3ST5 HS3ST5 SLC10A7 SLC10A7 B4GALT4 B4GALT4 GCNT2 GCNT2 HS3ST6 HS3ST6 ITIH3 ITIH3 CSGALNACT1 CSGALNACT1 HYAL2 HYAL2 CD44 CD44 LYG1 LYG1 HPSE HPSE ITIH5 ITIH5 EXT2 EXT2 CEMIP CEMIP ST3GAL2 ST3GAL2 NDNF NDNF B3GALT6 B3GALT6 EXT1 EXT1 EDNRB EDNRB CEMIP2 CEMIP2 FUCA1 FUCA1 CSGALNACT2 CSGALNACT2 CHST3 CHST3 HPSE2 HPSE2 HS2ST1 HS2ST1 UST UST HS3ST3B1 HS3ST3B1 PGLYRP4 PGLYRP4 ITIH2 ITIH2 SPOCK3 SPOCK3 EGFLAM EGFLAM SPAM1 SPAM1 IDS IDS CHST5 CHST5 HYAL3 HYAL3 CHST15 CHST15 ABCC5 ABCC5 CHST6 CHST6 LYG2 LYG2 BGN BGN B3GNT3 B3GNT3 SPOCK2 SPOCK2 B3GNT4 B3GNT4 UGDH UGDH CHST13 CHST13 EDNRA EDNRA SGSH SGSH NDST2 NDST2 DSEL DSEL CHST1 CHST1 B4GAT1 B4GAT1 CHST2 CHST2 CHST14 CHST14 HAS2 HAS2 GLB1 GLB1 CHST11 CHST11 B3GNT2 B3GNT2 HAS3 HAS3 GUSB GUSB CHSY3 CHSY3 IL15 IL15 NDST3 NDST3 PGLYRP2 PGLYRP2 PGLYRP3 PGLYRP3 B3GNT7 B3GNT7 PXYLP1 PXYLP1 HS3ST3A1 HS3ST3A1 CHST7 CHST7 ITIH1 ITIH1 ITIH4 ITIH4 HYAL1 HYAL1 B3GAT3 B3GAT3 FGF2 FGF2 IL1B IL1B IMPAD1 IMPAD1 GLCE GLCE PDGFRB PDGFRB NDST1 NDST1 HEXB HEXB XYLT1 XYLT1 HS3ST2 HS3ST2 HS6ST1 HS6ST1 GALNT5 GALNT5 GNS GNS LYVE1 LYVE1 CHSY1 CHSY1 SLC35D2 SLC35D2 CLN6 CLN6 IDUA IDUA CHPF CHPF TNFAIP6 TNFAIP6 NAGLU NAGLU HYAL4 HYAL4 HAS1 HAS1 TGFB1 TGFB1 ITIH6 ITIH6 DCN DCN CHPF2 CHPF2 B4GALT7 B4GALT7 XYLT2 XYLT2 PGLYRP1 PGLYRP1 HS3ST1 HS3ST1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NDST4Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 4; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Has low deacetylase activity but high sulfotransferase activity (By similarity); Belongs to the sulfotransferase 1 family. NDST subfamily. (872 aa)
ENSP00000495266DUF4962 domain-containing protein. (282 aa)
DSEDermatan-sulfate epimerase; Converts D-glucuronic acid to L-iduronic acid (IdoUA) residues. (958 aa)
FOXC1Forkhead box protein C1; DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development. Acts either as a transcriptional activator or repressor. Binds to the consensus binding site 5'- [G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes. Upon DNA-binding, promotes DNA bending. Acts as a transcriptional coactivator. Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By s [...] (553 aa)
ST3GAL3CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltransferase; Catalyzes the formation of the NeuAc-alpha-2,3-Gal-beta-1,4- GlcNAc-, NeuAc-alpha-2,3-Gal-beta-1,3-GlcNAc- and NeuAc-alpha-2,3-Gal- beta-1,3-GalNAc- sequences found in terminal carbohydrate groups of glycoproteins and glycolipids. The highest activity is toward Gal-beta- 1,3-GlcNAc and the lowest toward Gal-beta-1,3-GalNAc. Belongs to the glycosyltransferase 29 family. (449 aa)
CHST12Carbohydrate sulfotransferase 12; Catalyzes the transfer of sulfate to position 4 of the N- acetylgalactosamine (GalNAc) residue of chondroitin and desulfated dermatan sulfate. Chondroitin sulfate constitutes the predominant proteoglycan present in cartilage and is distributed on the surfaces of many cells and extracellular matrices. Activity toward partially desulfated dermatan sulfate is however lower. Does not form 4, 6-di-O- sulfated GalNAc when chondroitin sulfate C is used as an acceptor; Belongs to the sulfotransferase 2 family. (414 aa)
CHST9Carbohydrate sulfotransferase 9; Catalyzes the transfer of sulfate to position 4 of non- reducing N-acetylgalactosamine (GalNAc) residues in both N-glycans and O-glycans. Participates in biosynthesis of glycoprotein hormones lutropin and thyrotropin, by mediating sulfation of their carbohydrate structures. Has a higher activity toward carbonic anhydrase VI than toward lutropin. Only active against terminal GalNAcbeta1,GalNAcbeta. Isoform 2, but not isoform 1, is active toward chondroitin. (443 aa)
ST3GAL6Type 2 lactosamine alpha-2,3-sialyltransferase; Involved in the synthesis of sialyl-paragloboside, a precursor of sialyl-Lewis X determinant. Has a alpha-2,3- sialyltransferase activity toward Gal-beta1,4-GlcNAc structure on glycoproteins and glycolipids. Has a restricted substrate specificity, it utilizes Gal-beta1,4-GlcNAc on glycoproteins, and neolactotetraosylceramide and neolactohexaosylceramide, but not lactotetraosylceramide, lactosylceramide or asialo-GM1; Belongs to the glycosyltransferase 29 family. (384 aa)
HEXABeta-hexosaminidase subunit alpha; Responsible for the degradation of GM2 gangliosides, and a variety of other molecules containing terminal N-acetyl hexosamines, in the brain and other tissues. The form B is active against certain oligosaccharides. The form S has no measurable activity; Belongs to the glycosyl hydrolase 20 family. (540 aa)
ST3GAL4CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 4; Catalyzes the formation of the NeuAc-alpha-2,3-Gal-beta-1,4- GlcNAc-, and NeuAc-alpha-2,3-Gal-beta-1,3-GlcNAc- sequences found in terminal carbohydrate groups of glycoproteins and glycolipids. It may be involved in the biosynthesis of the sialyl Lewis X determinant. Belongs to the glycosyltransferase 29 family. (333 aa)
HS6ST2Heparan-sulfate 6-O-sulfotransferase 2; 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate. (645 aa)
ST3GAL1CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1; Responsible for the synthesis of the sequence NeuAc-alpha- 2,3-Gal-beta-1,3-GalNAc- found on sugar chains O-linked to Thr or Ser and also as a terminal sequence on certain gangliosides. SIAT4A and SIAT4B sialylate the same acceptor substrates but exhibit different Km values; Belongs to the glycosyltransferase 29 family. (340 aa)
ANGPT1Angiopoietin-1; Binds and activates TEK/TIE2 receptor by inducing its dimerization and tyrosine phosphorylation. Plays an important role in the regulation of angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Required for normal angiogenesis and heart development during embryogenesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells [...] (498 aa)
HS3ST5Heparan sulfate glucosamine 3-O-sulfotransferase 5; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to position 3 of glucosamine residues in heparan. Catalyzes the rate limiting step in the biosynthesis of heparan sulfate (HSact). This modification is a crucial step in the biosynthesis of anticoagulant heparan sulfate as it completes the structure of the antithrombin pentasaccharide binding site. Also generates GlcUA-GlcNS or IdoUA-GlcNS and IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified hep [...] (346 aa)
SLC10A7Sodium/bile acid cotransporter 7; Involved in teeth and skeletal development. Has an essential role in the biosynthesis and trafficking of glycosaminoglycans and glycoproteins, to produce a proper functioning extracellular matrix. Required for extracellular matrix mineralization. Also involved in the regulation of cellular calcium homeostasis. Does not show transport activity towards bile acids or steroid sulfates (including taurocholate, cholate, chenodeoxycholate, estrone-3-sulfate, dehydroepiandrosterone sulfate (DHEAS) and pregnenolone sulfate). Belongs to the bile acid:sodium symp [...] (358 aa)
B4GALT4Beta-1,4-galactosyltransferase 4; Responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids; Belongs to the glycosyltransferase 7 family. (344 aa)
GCNT2N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase; Branching enzyme that converts linear into branched poly-N- acetyllactosaminoglycans. Introduces the blood group I antigen during embryonic development. It is closely associated with the development and maturation of erythroid cells; Belongs to the glycosyltransferase 14 family. (402 aa)
HS3ST6Heparan sulfate glucosamine 3-O-sulfotransferase 6; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to heparan sulfate. The substrate-specific O-sulfation generates an enzyme-modified heparan sulfate which acts as a binding receptor to Herpes Simplex Virus-1 (HSV-1) and permits its entry. Unlike 3-OST-1, does not convert non- anticoagulant heparan sulfate to anticoagulant heparan sulfate. (342 aa)
ITIH3Inter-alpha-trypsin inhibitor heavy chain H3; May act as a carrier of hyaluronan in serum or as a binding protein between hyaluronan and other matrix protein, including those on cell surfaces in tissues to regulate the localization, synthesis and degradation of hyaluronan which are essential to cells undergoing biological processes. (890 aa)
CSGALNACT1Chondroitin sulfate N-acetylgalactosaminyltransferase 1; Transfers 1,4-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to the non-reducing end of glucuronic acid (GlcUA). Required for addition of the first GalNAc to the core tetrasaccharide linker and for elongation of chondroitin chains. Important role in chondroitin chain biosynthesis in cartilage formation and subsequent endochondral ossification. Moreover, is involved in the metabolism of aggrecan (By similarity). (532 aa)
HYAL2Hyaluronidase-2; Hydrolyzes high molecular weight hyaluronic acid to produce an intermediate-sized product which is further hydrolyzed by sperm hyaluronidase to give small oligosaccharides. Displays very low levels of activity. Associates with and negatively regulates MST1R. Belongs to the glycosyl hydrolase 56 family. (473 aa)
CD44CD44 antigen; Cell-surface receptor that plays a role in cell-cell interactions, cell adhesion and migration, helping them to sense and respond to changes in the tissue microenvironment. Participates thereby in a wide variety of cellular functions including the activation, recirculation and homing of T-lymphocytes, hematopoiesis, inflammation and response to bacterial infection. Engages, through its ectodomain, extracellular matrix components such as hyaluronan/HA, collagen, growth factors, cytokines or proteases and serves as a platform for signal transduction by assembling, via its c [...] (742 aa)
LYG1Lysozyme g1. (194 aa)
HPSEHeparanase 50 kDa subunit; Endoglycosidase that cleaves heparan sulfate proteoglycans (HSPGs) into heparan sulfate side chains and core proteoglycans. Participates in extracellular matrix (ECM) degradation and remodeling. Selectively cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group. Can also cleave the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying a 2-O-sulfo group, but not linkages between a glucuronic acid unit and a 2-O-sulfated iduronic acid moiety. It is essentially [...] (543 aa)
ITIH5Inter-alpha-trypsin inhibitor heavy chain H5; May act as a tumor suppressor. (942 aa)
EXT2Exostosin-2; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor. Required for the exosomal release of SDCBP, CD63 and syndecan. (751 aa)
CEMIPCell migration-inducing and hyaluronan-binding protein; Mediates depolymerization of hyaluronic acid (HA) via the cell membrane-associated clathrin-coated pit endocytic pathway. Binds to hyaluronic acid. Hydrolyzes high molecular weight hyaluronic acid to produce an intermediate-sized product, a process that may occur through rapid vesicle endocytosis and recycling without intracytoplasmic accumulation or digestion in lysosomes. Involved in hyaluronan catabolism in the dermis of the skin and arthritic synovium. Positively regulates epithelial-mesenchymal transition (EMT), and hence tum [...] (1361 aa)
ST3GAL2CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 2; Responsible for the synthesis of the sequence NeuAc-alpha- 2,3-Gal-beta-1,3-GalNAc- found in terminal carbohydrate groups of certain glycoproteins, oligosaccharides and glycolipids. SIAT4A and SIAT4B sialylate the same acceptor substrates but exhibit different Km values; Belongs to the glycosyltransferase 29 family. (350 aa)
NDNFProtein NDNF; Promotes matrix assembly and cell adhesiveness (By similarity). Promotes neuron migration, growth and survival as well as neurite outgrowth. Promotes endothelial cell survival, vessel formation and plays an important role in the process of revascularization through NOS3-dependent mechanisms. (568 aa)
B3GALT6Beta-1,3-galactosyltransferase 6; Beta-1,3-galactosyltransferase that transfers galactose from UDP-galactose to substrates with a terminal beta-linked galactose residue. Has a preference for galactose-beta-1,4-xylose that is found in the linker region of glycosaminoglycans, such as heparan sulfate and chondroitin sulfate. Has no activity towards substrates with terminal glucosamine or galactosamine residues. (329 aa)
EXT1Exostosin-1; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor. Required for the exosomal release of SDCBP, CD63 and syndecan. (746 aa)
EDNRBEndothelin receptor type B; Non-specific receptor for endothelin 1, 2, and 3. Mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Belongs to the G-protein coupled receptor 1 family. Endothelin receptor subfamily. EDNRB sub-subfamily. (532 aa)
CEMIP2Cell surface hyaluronidase; Cell surface hyaluronidase that mediates the initial cleavage of extracellular high-molecular-weight hyaluronan into intermediate- size hyaluronan of approximately 5 kDa fragments. Acts as a regulator of angiogenesis and heart morphogenesis by mediating degradation of extracellular hyaluronan, thereby regulating VEGF signaling (By similarity). Is very specific to hyaluronan; not able to cleave chondroitin sulfate or dermatan sulfate. (1383 aa)
FUCA1Tissue alpha-L-fucosidase; Alpha-L-fucosidase is responsible for hydrolyzing the alpha- 1,6-linked fucose joined to the reducing-end N-acetylglucosamine of the carbohydrate moieties of glycoproteins; Belongs to the glycosyl hydrolase 29 family. (466 aa)
CSGALNACT2Chondroitin sulfate N-acetylgalactosaminyltransferase 2; Transfers 1,4-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to the non-reducing end of glucuronic acid (GlcUA). Required for addition of the first GalNAc to the core tetrasaccharide linker and for elongation of chondroitin chains. (542 aa)
CHST3Carbohydrate sulfotransferase 3; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of the N-acetylgalactosamine (GalNAc) residue of chondroitin. Chondroitin sulfate constitutes the predominant proteoglycan present in cartilage and is distributed on the surfaces of many cells and extracellular matrices. Can also sulfate Gal residues of keratan sulfate, another glycosaminoglycan, and the Gal residues in sialyl N-acetyllactosamine (sialyl LacNAc) oligosaccharides. May play a role in the maintenance of [...] (479 aa)
HPSE2Inactive heparanase-2; Binds heparin and heparan sulfate with high affinity, but lacks heparanase activity. Inhibits HPSE, possibly by competing for its substrates (in vitro). (592 aa)
HS2ST1Heparan sulfate 2-O-sulfotransferase 1; Catalyzes the transfer of sulfate to the C2-position of selected hexuronic acid residues within the maturing heparan sulfate (HS). 2-O-sulfation within HS, particularly of iduronate residues, is essential for HS to participate in a variety of high-affinity ligand- binding interactions and signaling processes. Mediates 2-O-sulfation of both L-iduronyl and D-glucuronyl residues (By similarity). (356 aa)
USTUronyl 2-sulfotransferase; Sulfotransferase that catalyzes the transfer of sulfate to the position 2 of uronyl residues. Has mainly activity toward iduronyl residues in dermatan sulfate, and weaker activity toward glucuronyl residues of chondroitin sulfate. Has no activity toward desulfated N- resulfated heparin. (406 aa)
HS3ST3B1Heparan sulfate glucosamine 3-O-sulfotransferase 3B1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N-unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in IdoUA2S-GlcNS and also in IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified heparan sulfate which acts as a binding receptor to Herpes simplex virus-1 (HSV-1) and permits its entry. Unlike 3-OST-1, does not convert non-anticoagulant heparan sulfate to antico [...] (390 aa)
PGLYRP4Peptidoglycan recognition protein 4; Pattern receptor that binds to murein peptidoglycans (PGN) of Gram-positive bacteria. Has bactericidal activity towards Gram-positive bacteria. May kill Gram-positive bacteria by interfering with peptidoglycan biosynthesis. Binds also to Gram-negative bacteria, and has bacteriostatic activity towards Gram-negative bacteria. Plays a role in innate immunity. (373 aa)
ITIH2Inter-alpha-trypsin inhibitor heavy chain H2; May act as a carrier of hyaluronan in serum or as a binding protein between hyaluronan and other matrix protein, including those on cell surfaces in tissues to regulate the localization, synthesis and degradation of hyaluronan which are essential to cells undergoing biological processes; Belongs to the ITIH family. (946 aa)
SPOCK3Testican-3; May participate in diverse steps of neurogenesis. Inhibits the processing of pro-matrix metalloproteinase 2 (MMP-2) by MT1-MMP and MT3-MMP. May interfere with tumor invasion. (436 aa)
EGFLAMPikachurin; Involved in both the retinal photoreceptor ribbon synapse formation and physiological functions of visual perception. Necessary for proper bipolar dendritic tip apposition to the photoreceptor ribbon synapse. Promotes matrix assembly and cell adhesiveness (By similarity). (1017 aa)
SPAM1Hyaluronidase PH-20; Involved in sperm-egg adhesion. Upon fertilization sperm must first penetrate a layer of cumulus cells that surrounds the egg before reaching the zona pellucida. The cumulus cells are embedded in a matrix containing hyaluronic acid which is formed prior to ovulation. This protein aids in penetrating the layer of cumulus cells by digesting hyaluronic acid; Belongs to the glycosyl hydrolase 56 family. (511 aa)
IDSIduronate 2-sulfatase 14 kDa chain; Lysosomal enzyme involved in the degradation pathway of dermatan sulfate and heparan sulfate. (550 aa)
CHST5Carbohydrate sulfotransferase 5; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of non-reducing N-acetylglucosamine (GlcNAc) residues and O- linked sugars of mucin-type acceptors. Acts on the non-reducing terminal GlcNAc of short carbohydrate substrates. However, it does not transfer sulfate to longer carbohydrate substrates that have poly-N- acetyllactosamine structures. Has no activity toward keratan. Not involved in generating HEV-expressed ligands for SELL. Its substrate specificity may be in [...] (411 aa)
HYAL3Hyaluronidase-3; Facilitates sperm penetration into the layer of cumulus cells surrounding the egg by digesting hyaluronic acid. Involved in induction of the acrosome reaction in the sperm. Involved in follicular atresia, the breakdown of immature ovarian follicles that are not selected to ovulate. Induces ovarian granulosa cell apoptosis, possibly via apoptotic signaling pathway involving CASP8 and CASP3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage. Has no hyaluronidase activity in embryonic fibroblasts in vitro. Has no hyaluronidase activity in granulosa cells in vitro. (417 aa)
CHST15Carbohydrate sulfotransferase 15; Sulfotransferase that transfers sulfate from 3'- phosphoadenosine 5'-phosphosulfate (PAPS) to the C-6 hydroxyl group of the GalNAc 4-sulfate residue of chondroitin sulfate A and forms chondroitin sulfate E containing GlcA-GalNAc(4,6-SO(4)) repeating units. It also transfers sulfate to a unique non-reducing terminal sequence, GalNAc(4SO4)-GlcA(2SO4)-GalNAc(6SO4), to yield a highly sulfated structure similar to the structure found in thrombomodulin chondroitin sulfate. May also act as a B-cell receptor involved in BCR ligation-mediated early activation t [...] (561 aa)
ABCC5Multidrug resistance-associated protein 5; Acts as a multispecific organic anion pump which can transport nucleotide analogs; Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1437 aa)
CHST6Carbohydrate sulfotransferase 6; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of non-reducing N-acetylglucosamine (GlcNAc) residues of keratan. Mediates sulfation of keratan in cornea. Keratan sulfate plays a central role in maintaining corneal transparency. Acts on the non- reducing terminal GlcNAc of short and long carbohydrate substrates that have poly-N-acetyllactosamine structures; Belongs to the sulfotransferase 1 family. Gal/GlcNAc/GalNAc subfamily. (395 aa)
LYG2Lysozyme g-like protein 2; May act as a potent antibacterial protein that may play a role in the innate immunity; Belongs to the glycosyl hydrolase 23 family. (212 aa)
BGNBiglycan; May be involved in collagen fiber assembly. (368 aa)
B3GNT3N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 3; Beta-1,3-N-acetylglucosaminyltransferase involved in the synthesis of poly-N-acetyllactosamine. Has activity for type 2 oligosaccharides. Also acts as a core1-1,3-N- acetylglucosaminyltransferase (Core1-beta3GlcNAcT) to form the 6-sulfo sialyl Lewis x on extended core1 O-glycans. (372 aa)
SPOCK2Testican-2; May participate in diverse steps of neurogenesis. Binds calcium. (424 aa)
B3GNT4N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 4; Beta-1,3-N-acetylglucosaminyltransferase involved in the synthesis of poly-N-acetyllactosamine. Has activity for type 2 oligosaccharides; Belongs to the glycosyltransferase 31 family. (378 aa)
UGDHUDP-glucose 6-dehydrogenase; Catalyzes the formation of UDP-alpha-D-glucuronate, a constituent of complex glycosaminoglycans. Required for the biosynthesis of chondroitin sulfate and heparan sulfate. Required for embryonic development via its role in the biosynthesis of glycosaminoglycans (By similarity). Belongs to the UDP-glucose/GDP-mannose dehydrogenase family. (494 aa)
CHST13Carbohydrate sulfotransferase 13; Catalyzes the transfer of sulfate to position 4 of the N- acetylgalactosamine (GalNAc) residue of chondroitin. Chondroitin sulfate constitutes the predominant proteoglycan present in cartilage and is distributed on the surfaces of many cells and extracellular matrices. Transfers sulfate to the C4 hydroxyl of beta1,4-linked GalNAc that is substituted with a beta-linked glucuronic acid at the C-3 hydroxyl. No activity toward dermatan. (341 aa)
EDNRAEndothelin-1 receptor; Receptor for endothelin-1. Mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. The rank order of binding affinities for ET-A is: ET1 > ET2 >> ET3. (427 aa)
SGSHN-sulphoglucosamine sulphohydrolase; Catalyzes a step in lysosomal heparan sulfate degradation. Belongs to the sulfatase family. (502 aa)
NDST2Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 2; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Plays a role in determining the extent and pattern of sulfation of heparan sulfate. Required for the exosomal release of SDCBP, CD63 and syndecan. (883 aa)
DSELDermatan-sulfate epimerase-like protein; Dermatan sulfate epimerase like; Belongs to the dermatan-sulfate isomerase family. (1222 aa)
CHST1Carbohydrate sulfotransferase 1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of galactose (Gal) residues of keratan. Has a preference for sulfating keratan sulfate, but it also transfers sulfate to the unsulfated polymer. The sulfotransferase activity on sialyl LacNAc structures is much higher than the corresponding desialylated substrate, and only internal Gal residues are sulfated. May function in the sulfation of sialyl N-acetyllactosamine oligosaccharide chains attached to glycoproteins. P [...] (411 aa)
B4GAT1Beta-1,4-glucuronyltransferase 1; Beta-1,4-glucuronyltransferase involved in O-mannosylation of alpha-dystroglycan (DAG1). Transfers a glucuronic acid (GlcA) residue onto a xylose (Xyl) acceptor to produce the glucuronyl-beta-1,4-xylose- beta disaccharide primer, which is further elongated by LARGE1, during synthesis of phosphorylated O-mannosyl glycan. Phosphorylated O-mannosyl glycan is a carbohydrate is a carbohydrate structure present in alpha-dystroglycan (DAG1), which is required for binding laminin G-like domain-containing extracellular proteins with high affinity. Required for [...] (415 aa)
CHST2Carbohydrate sulfotransferase 2; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of non-reducing N-acetylglucosamine (GlcNAc) residues within keratan-like structures on N-linked glycans and within mucin-associated glycans that can ultimately serve as SELL ligands. SELL ligands are present in high endothelial cells (HEVs) and play a central role in lymphocyte homing at sites of inflammation. Participates in biosynthesis of the SELL ligand sialyl 6-sulfo Lewis X and in lymphocyte homing to Peyer pat [...] (530 aa)
CHST14Carbohydrate sulfotransferase 14; Catalyzes the transfer of sulfate to position 4 of the N- acetylgalactosamine (GalNAc) residue of dermatan sulfate. Plays a pivotal role in the formation of 4-0-sulfated IdoA blocks in dermatan sulfate. Transfers sulfate to the C-4 hydroxyl of beta1,4-linked GalNAc that is substituted with an alpha-linked iduronic acid (IdoUA) at the C-3 hydroxyl. Transfers sulfate more efficiently to GalNAc residues in -IdoUA-GalNAc-IdoUA- than in -GlcUA-GalNAc-GlcUA-sequences. Has preference for partially desulfated dermatan sulfate. Addition of sulfate to GalNAc may [...] (376 aa)
HAS2Hyaluronan synthase 2; Catalyzes the addition of GlcNAc or GlcUA monosaccharides to the nascent hyaluronan polymer. Therefore, it is essential to hyaluronan synthesis a major component of most extracellular matrices that has a structural role in tissues architectures and regulates cell adhesion, migration and differentiation. This is one of the isozymes catalyzing that reaction and it is particularly responsible for the synthesis of high molecular mass hyaluronan. Required for the transition of endocardial cushion cells into mesenchymal cells, a process crucial for heart development. M [...] (552 aa)
GLB1Beta-galactosidase; [Isoform 1]: Cleaves beta-linked terminal galactosyl residues from gangliosides, glycoproteins, and glycosaminoglycans. (677 aa)
CHST11Carbohydrate sulfotransferase 11; Catalyzes the transfer of sulfate to position 4 of the N- acetylgalactosamine (GalNAc) residue of chondroitin. Chondroitin sulfate constitutes the predominant proteoglycan present in cartilage and is distributed on the surfaces of many cells and extracellular matrices. Can also sulfate Gal residues in desulfated dermatan sulfate. Preferentially sulfates in GlcA->GalNAc unit than in IdoA->GalNAc unit. Does not form 4, 6-di-O-sulfated GalNAc when chondroitin sulfate C is used as an acceptor. (352 aa)
B3GNT2N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 2; Beta-1,3-N-acetylglucosaminyltransferase involved in the synthesis of poly-N-acetyllactosamine. Catalyzes the initiation and elongation of poly-N-acetyllactosamine chains. Shows a marked preference for Gal(beta1-4)Glc(NAc)-based acceptors. Probably constitutes the main polylactosamine synthase. Belongs to the glycosyltransferase 31 family. (397 aa)
HAS3Hyaluronan synthase 3; Catalyzes the addition of GlcNAc or GlcUA monosaccharides to the nascent hyaluronan polymer. Therefore, it is essential to hyaluronan synthesis a major component of most extracellular matrices that has a structural role in tissues architectures and regulates cell adhesion, migration and differentiation. This is one of the isozymes catalyzing that reaction (By similarity); Belongs to the NodC/HAS family. (553 aa)
GUSBBeta-glucuronidase; Plays an important role in the degradation of dermatan and keratan sulfates; Belongs to the glycosyl hydrolase 2 family. (651 aa)
CHSY3Chondroitin sulfate synthase 3; Has both beta-1,3-glucuronic acid and beta-1,4-N- acetylgalactosamine transferase activity. Transfers glucuronic acid (GlcUA) from UDP-GlcUA and N-acetylgalactosamine (GalNAc) from UDP- GalNAc to the non-reducing end of the elongating chondroitin polymer. Specific activity is much reduced compared to CHSY1. (882 aa)
IL15Interleukin-15; Cytokine that stimulates the proliferation of T-lymphocytes. Stimulation by IL15 requires interaction of IL15 with components of the IL2 receptor, including IL2RB and probably IL2RG but not IL2RA. In neutrophils, stimulates phagocytosis probably by signaling through the IL15 receptor, composed of the subunits IL15RA, IL2RB and IL2RG, which results in kinase SYK activation ; Belongs to the IL-15/IL-21 family. (162 aa)
NDST3Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 3; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Has high deacetylase activity but low sulfotransferase activity. (873 aa)
PGLYRP2N-acetylmuramoyl-L-alanine amidase; May play a scavenger role by digesting biologically active peptidoglycan (PGN) into biologically inactive fragments. Has no direct bacteriolytic activity; Belongs to the N-acetylmuramoyl-L-alanine amidase 2 family. (634 aa)
PGLYRP3Peptidoglycan recognition protein 3; Pattern receptor that binds to murein peptidoglycans (PGN) of Gram-positive bacteria. Has bactericidal activity towards Gram-positive bacteria. May kill Gram-positive bacteria by interfering with peptidoglycan biosynthesis. Binds also to Gram-negative bacteria, and has bacteriostatic activity towards Gram-negative bacteria. Plays a role in innate immunity; Belongs to the N-acetylmuramoyl-L-alanine amidase 2 family. (341 aa)
B3GNT7UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 7; May be involved in keratane sulfate biosynthesis. Transfers N-acetylgalactosamine on to keratan sulfate-related glycans. May play a role in preventing cells from migrating out of the original tissues and invading surrounding tissues. (401 aa)
PXYLP12-phosphoxylose phosphatase 1; Responsible for the 2-O-dephosphorylation of xylose in the glycosaminoglycan-protein linkage region of proteoglycans thereby regulating the amount of mature glycosaminoglycan (GAG) chains. Sulfated glycosaminoglycans (GAGs), including heparan sulfate and chondroitin sulfate, are synthesized on the so-called common GAG- protein linkage region (GlcUAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser) of core proteins, which is formed by the stepwise addition of monosaccharide residues by the respective specific glycosyltransferases. Xylose 2-O-dephosphorylation duri [...] (480 aa)
HS3ST3A1Heparan sulfate glucosamine 3-O-sulfotransferase 3A1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N-unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in IdoUA2S-GlcNS and also in IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified heparan sulfate which acts as a binding receptor to Herpes simplex virus-1 (HSV-1) and permits its entry. Unlike 3-OST-1, does not convert non-anticoagulant heparan sulfate to antico [...] (406 aa)
CHST7Carbohydrate sulfotransferase 7; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of non-reducing N-acetylglucosamine (GlcNAc) residues. Preferentially acts on mannose-linked GlcNAc. Also able to catalyze the transfer of sulfate to position 6 of the N-acetylgalactosamine (GalNAc) residue of chondroitin. Also acts on core 2 mucin-type oligosaccharide and N-acetyllactosamine oligomer with a lower efficiency. Has weak or no activity toward keratan sulfate and oligosaccharides containing the Galbeta1-4 [...] (486 aa)
ITIH1Inter-alpha-trypsin inhibitor heavy chain H1; May act as a carrier of hyaluronan in serum or as a binding protein between hyaluronan and other matrix protein, including those on cell surfaces in tissues to regulate the localization, synthesis and degradation of hyaluronan which are essential to cells undergoing biological processes. (911 aa)
ITIH435 kDa inter-alpha-trypsin inhibitor heavy chain H4; Type II acute-phase protein (APP) involved in inflammatory responses to trauma. May also play a role in liver development or regeneration. (930 aa)
HYAL1Hyaluronidase-1; May have a role in promoting tumor progression. May block the TGFB1-enhanced cell growth; Belongs to the glycosyl hydrolase 56 family. (435 aa)
B3GAT3Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3; Glycosaminoglycans biosynthesis. Involved in forming the linkage tetrasaccharide present in heparan sulfate and chondroitin sulfate. Transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal-beta-1,3-Gal-beta-1,4-Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. Can also play a role in the biosynthesis of l2/HNK-1 carbohydrate epitope on glycoproteins. Shows strict specificity for Gal-beta-1 [...] (335 aa)
FGF2Fibroblast growth factor 2; Acts as a ligand for FGFR1, FGFR2, FGFR3 and FGFR4. Also acts as an integrin ligand which is required for FGF2 signaling. Binds to integrin ITGAV:ITGB3. Plays an important role in the regulation of cell survival, cell division, cell differentiation and cell migration. Functions as a potent mitogen in vitro. Can induce angiogenesis. (288 aa)
IL1BInterleukin-1 beta; Potent proinflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B- cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T- helper 1 (Th1) cells. (269 aa)
IMPAD1Golgi-resident adenosine 3',5'-bisphosphate 3'-phosphatase; Exhibits 3'-nucleotidase activity toward adenosine 3',5'- bisphosphate (PAP), namely hydrolyzes adenosine 3',5'-bisphosphate into adenosine 5'-monophosphate (AMP) and a phosphate. May play a role in the formation of skeletal elements derived through endochondral ossification, possibly by clearing adenosine 3',5'-bisphosphate produced by Golgi sulfotransferases during glycosaminoglycan sulfation. Has no activity toward 3'-phosphoadenosine 5'-phosphosulfate (PAPS) or inositol phosphate (IP) substrates including I(1)P, I(1,4)P2, [...] (359 aa)
GLCED-glucuronyl C5-epimerase; Converts D-glucuronic acid residues adjacent to N-sulfate sugar residues to L-iduronic acid residues, both in maturing heparan sulfate (HS) and heparin chains. This is important for further modifications that determine the specificity of interactions between these glycosaminoglycans and proteins; Belongs to the D-glucuronyl C5-epimerase family. (617 aa)
PDGFRBPlatelet-derived growth factor receptor beta; Tyrosine-protein kinase that acts as cell-surface receptor for homodimeric PDGFB and PDGFD and for heterodimers formed by PDGFA and PDGFB, and plays an essential role in the regulation of embryonic development, cell proliferation, survival, differentiation, chemotaxis and migration. Plays an essential role in blood vessel development by promoting proliferation, migration and recruitment of pericytes and smooth muscle cells to endothelial cells. Plays a role in the migration of vascular smooth muscle cells and the formation of neointima at v [...] (1106 aa)
NDST1Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Plays a role in determining the extent and pattern of sulfation of heparan sulfate. Compared to other NDST enzymes, its presence is absolutely required. Participates in biosynthesis of heparan sulfate [...] (882 aa)
HEXBBeta-hexosaminidase subunit beta chain A; Responsible for the degradation of GM2 gangliosides, and a variety of other molecules containing terminal N-acetyl hexosamines, in the brain and other tissues; Belongs to the glycosyl hydrolase 20 family. (556 aa)
XYLT1Xylosyltransferase 1; Catalyzes the first step in the biosynthesis of chondroitin sulfate and dermatan sulfate proteoglycans, such as DCN. Transfers D- xylose from UDP-D-xylose to specific serine residues of the core protein. Required for normal embryonic and postnatal skeleton development, especially of the long bones. Required for normal maturation of chondrocytes during bone development, and normal onset of ossification (By similarity). Belongs to the glycosyltransferase 14 family. XylT subfamily. (959 aa)
HS3ST2Heparan sulfate glucosamine 3-O-sulfotransferase 2; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N-unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in GlcA2S-GlcNS. Unlike 3-OST-1, does not convert non-anticoagulant heparan sulfate to anticoagulant heparan sulfate. (367 aa)
HS6ST1Heparan-sulfate 6-O-sulfotransferase 1; 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate. Critical for normal neuronal development where it may play a role in neuron branching. May also play a role in limb development. May prefer iduronic acid. (411 aa)
GALNT5Polypeptide N-acetylgalactosaminyltransferase 5; Catalyzes the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D-galactosamine residue to a serine or threonine residue on the protein receptor. Has activity toward EA2 peptide substrate, but has a weak activity toward Muc2 or Muc1b substrates (By similarity). (940 aa)
GNSN-acetylglucosamine-6-sulfatase; Glucosamine-6-sulfatase; Belongs to the sulfatase family. (552 aa)
LYVE1Lymphatic vessel endothelial hyaluronic acid receptor 1; Ligand-specific transporter trafficking between intracellular organelles (TGN) and the plasma membrane. Plays a role in autocrine regulation of cell growth mediated by growth regulators containing cell surface retention sequence binding (CRS). May act as a hyaluronan (HA) transporter, either mediating its uptake for catabolism within lymphatic endothelial cells themselves, or its transport into the lumen of afferent lymphatic vessels for subsequent re-uptake and degradation in lymph nodes. (322 aa)
CHSY1Chondroitin sulfate synthase 1; Has both beta-1,3-glucuronic acid and beta-1,4-N- acetylgalactosamine transferase activity. Transfers glucuronic acid (GlcUA) from UDP-GlcUA and N-acetylgalactosamine (GalNAc) from UDP- GalNAc to the non-reducing end of the elongating chondroitin polymer. Involved in the negative control of osteogenesis likely through the modulation of NOTCH signaling. (802 aa)
SLC35D2UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose transporter; Antiporter transporting nucleotide sugars such as UDP-N- acetylglucosamine (UDP-GlcNAc), UDP-glucose (UDP-Glc) and GDP-mannose (GDP-Man) pooled in the cytosol into the lumen of the Golgi in exchange for the corresponding nucleosides monophosphates (UMP for UDP-sugars and GMP for GDP-sugars). May take part in heparan sulfate synthesis by supplying UDP-Glc-NAc, the donor substrate, and thus be involved in growth factor signaling. (337 aa)
CLN6CLN6 transmembrane ER protein. (311 aa)
IDUAalpha-L-iduronidase. (653 aa)
CHPFChondroitin sulfate synthase 2; Has both beta-1,3-glucuronic acid and beta-1,4-N- acetylgalactosamine transferase activity. Transfers glucuronic acid (GlcUA) from UDP-GlcUA and N-acetylgalactosamine (GalNAc) from UDP- GalNAc to the non-reducing end of the elongating chondroitin polymer. Isoform 2 may facilitate PRKN transport into the mitochondria. In collaboration with PRKN, isoform 2 may enhance cell viability and protect cells from oxidative stress. (775 aa)
TNFAIP6Tumor necrosis factor-inducible gene 6 protein; Possibly involved in cell-cell and cell-matrix interactions during inflammation and tumorigenesis. (277 aa)
NAGLUAlpha-N-acetylglucosaminidase 77 kDa form; Involved in the degradation of heparan sulfate. (743 aa)
HYAL4Hyaluronidase-4; Endo-hyaluronidase that degrades hyaluronan to smaller oligosaccharide fragments. Has also chondroitin sulfate hydrolase activity, The best substrate being the galactosaminidic linkage in the sequence of a trisulfated tetrasaccharide. (481 aa)
HAS1Hyaluronan synthase 1; Catalyzes the addition of GlcNAc or GlcUA monosaccharides to the nascent hyaluronan polymer. Therefore, it is essential to hyaluronan synthesis a major component of most extracellular matrices that has a structural role in tissues architectures and regulates cell adhesion, migration and differentiation. This is one of the isozymes catalyzing that reaction. Also able to catalyze the synthesis of chito- oligosaccharide depending on the substrate (By similarity). Belongs to the NodC/HAS family. (578 aa)
TGFB1Transforming growth factor beta-1 proprotein; Transforming growth factor beta-1 proprotein: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-1 (TGF-beta-1) chains, which constitute the regulatory and active subunit of TGF-beta-1, respectively. Transforming growth factor beta-1: Multifunctional protein that regulates the growth and differentiation of various cell types and is involved in various processes, such as normal development, immune function, microglia function and responses to neurodegeneration (By similarity). Activation into mature form fo [...] (390 aa)
ITIH6Inter-alpha-trypsin inhibitor heavy chain family member 6. (1313 aa)
DCNDecorin; May affect the rate of fibrils formation. (359 aa)
CHPF2Chondroitin sulfate glucuronyltransferase; Transfers glucuronic acid (GlcUA) from UDP-GlcUA to N- acetylgalactosamine residues on the non-reducing end of the elongating chondroitin polymer. Has no N-acetylgalactosaminyltransferase activity. (772 aa)
B4GALT7Beta-1,4-galactosyltransferase 7; Required for the biosynthesis of the tetrasaccharide linkage region of proteoglycans, especially for small proteoglycans in skin fibroblasts; Belongs to the glycosyltransferase 7 family. (327 aa)
XYLT2Xylosyltransferase 2; Catalyzes the first step in the biosynthesis of chondroitin sulfate, heparan sulfate and dermatan sulfate proteoglycans, such as DCN. Transfers D-xylose from UDP-D-xylose to specific serine residues of the core protein; Belongs to the glycosyltransferase 14 family. XylT subfamily. (865 aa)
PGLYRP1Peptidoglycan recognition protein 1; Pattern receptor that binds to murein peptidoglycans (PGN) of Gram-positive bacteria. Has bactericidal activity towards Gram-positive bacteria. May kill Gram-positive bacteria by interfering with peptidoglycan biosynthesis. Binds also to Gram-negative bacteria, and has bacteriostatic activity towards Gram-negative bacteria. Plays a role in innate immunity. (196 aa)
HS3ST1Heparan sulfate glucosamine 3-O-sulfotransferase 1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to position 3 of glucosamine residues in heparan. Catalyzes the rate limiting step in the biosynthesis of heparan sulfate (HSact). This modification is a crucial step in the biosynthesis of anticoagulant heparan sulfate as it completes the structure of the antithrombin pentasaccharide binding site. (307 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]