Your Input: | |||||
ACVR2B | Activin receptor type-2B; Transmembrane serine/threonine kinase activin type-2 receptor forming an activin receptor complex with activin type-1 serine/threonine kinase receptors (ACVR1, ACVR1B or ACVR1c). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to [...] (512 aa) | ||||
INHBA | Inhibin beta A chain; Inhibins and activins inhibit and activate, respectively, the secretion of follitropin by the pituitary gland. Inhibins/activins are involved in regulating a number of diverse functions such as hypothalamic and pituitary hormone secretion, gonadal hormone secretion, germ cell development and maturation, erythroid differentiation, insulin secretion, nerve cell survival, embryonic axial development or bone growth, depending on their subunit composition. Inhibins appear to oppose the functions of activins; Belongs to the TGF-beta family. (426 aa) | ||||
ACVR1C | Activin receptor type-1C; Serine/threonine protein kinase which forms a receptor complex on ligand binding. The receptor complex consisting of 2 type II and 2 type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators, SMAD2 and SMAD3. Receptor for activin AB, activin B and NODAL. Plays a role in cell differentiation, growth arrest and apoptosis. (493 aa) | ||||
AMHR2 | Anti-Muellerian hormone type-2 receptor; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for anti-Muellerian hormone; Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family. TGFB receptor subfamily. (573 aa) | ||||
CFC1 | Cryptic protein; NODAL coreceptor involved in the correct establishment of the left-right axis. May play a role in mesoderm and/or neural patterning during gastrulation; Belongs to the EGF-CFC (Cripto-1/FRL1/Cryptic) family. (223 aa) | ||||
SMAD2 | Mothers against decapentaplegic homolog 2; Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. May act as a tumor suppressor in colorectal carcinoma. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. (467 aa) | ||||
GDF7 | Growth/differentiation factor 7; May play an active role in the motor area of the primate neocortex. (450 aa) | ||||
CFC1B | Cripto, FRL-1, cryptic family 1B. (223 aa) | ||||
BMP10 | Bone morphogenetic protein 10; Required for maintaining the proliferative activity of embryonic cardiomyocytes by preventing premature activation of the negative cell cycle regulator CDKN1C/p57KIP and maintaining the required expression levels of cardiogenic factors such as MEF2C and NKX2-5. Acts as a ligand for ACVRL1/ALK1, BMPR1A/ALK3 and BMPR1B/ALK6, leading to activation of SMAD1, SMAD5 and SMAD8 transcription factors. Inhibits endothelial cell migration and growth. May reduce cell migration and cell matrix adhesion in breast cancer cell lines. (424 aa) | ||||
TDGF1 | Teratocarcinoma-derived growth factor 1; GPI-anchored cell membrane protein involved in Nodal signaling. Cell-associated TDGF1 acts as a Nodal coreceptor in cis. Shedding of TDGF1 by TMEM8A modulates Nodal signaling by allowing soluble TDGF1 to act as a Nodal coreceptor on other cells. Could play a role in the determination of the epiblastic cells that subsequently give rise to the mesoderm. (188 aa) | ||||
SMAD3 | Mothers against decapentaplegic homolog 3; Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP- 1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and m [...] (425 aa) | ||||
HJV | Hemojuvelin; Acts as a bone morphogenetic protein (BMP) coreceptor. Through enhancement of BMP signaling regulates hepcidin (HAMP) expression and regulates iron homeostasis. Belongs to the repulsive guidance molecule (RGM) family. (426 aa) | ||||
ACVR2A | Activin receptor type-2A; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A. Mediates induction of adipogenesis by GDF6 (By similarity). (513 aa) | ||||
GDF2 | Growth/differentiation factor 2; Potent circulating inhibitor of angiogenesis. Signals through the type I activin receptor ACVRL1 but not other Alks. Signaling through SMAD1 in endothelial cells requires TGF-beta coreceptor endoglin/ENG. (429 aa) | ||||
TGFBR1 | TGF-beta receptor type-1; Transmembrane serine/threonine kinase forming with the TGF- beta type II serine/threonine kinase receptor, TGFBR2, the non- promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinog [...] (507 aa) | ||||
CITED2 | Cbp/p300-interacting transactivator 2; Transcriptional coactivator of the p300/CBP-mediated transcription complex. Acts as a bridge, linking TFAP2 transcription factors and the p300/CBP transcriptional coactivator complex in order to stimulate TFAP2-mediated transcriptional activation. Positively regulates TGF-beta signaling through its association with the SMAD/p300/CBP-mediated transcriptional coactivator complex. Stimulates the peroxisome proliferator-activated receptors PPARA transcriptional activity. Enhances estrogen-dependent transactivation mediated by estrogen receptors. Acts [...] (275 aa) | ||||
ACVR1B | Activin receptor type-1B; Transmembrane serine/threonine kinase activin type-1 receptor forming an activin receptor complex with activin receptor type-2 (ACVR2A or ACVR2B). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating a many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine [...] (546 aa) | ||||
ACVR1 | Activin receptor type-1; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin. May be involved for left-right pattern formation during embryogenesis (By similarity); Belongs to the protein kinase superfamily. TKL Ser/Thr protein kinase family. TGFB receptor subfamily. (509 aa) | ||||
ACVRL1 | Serine/threonine-protein kinase receptor R3; Type I receptor for TGF-beta family ligands BMP9/GDF2 and BMP10 and important regulator of normal blood vessel development. On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. May bind activin as well. (503 aa) | ||||
FGF9 | Fibroblast growth factor 9; Plays an important role in the regulation of embryonic development, cell proliferation, cell differentiation and cell migration. May have a role in glial cell growth and differentiation during development, gliosis during repair and regeneration of brain tissue after damage, differentiation and survival of neuronal cells, and growth stimulation of glial tumors; Belongs to the heparin-binding growth factors family. (208 aa) | ||||
FOXH1 | Forkhead box protein H1; Transcriptional activator. Recognizes and binds to the DNA sequence 5'-TGT[GT][GT]ATT-3'. Required for induction of the goosecoid (GSC) promoter by TGF-beta or activin signaling. Forms a transcriptionally active complex containing FOXH1/SMAD2/SMAD4 on a site on the GSC promoter called TARE (TGF-beta/activin response element). (365 aa) | ||||
BMPR2 | Bone morphogenetic protein receptor type-2; On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Binds to BMP7, BMP2 and, less efficiently, BMP4. Binding is weak but enhanced by the presence of type I receptors for BMPs. Mediates induction of adipogenesis by GDF6. (1038 aa) | ||||
TGIF2 | Homeobox protein TGIF2; Transcriptional repressor, which probably repress transcription by binding directly the 5'-CTGTCAA-3' DNA sequence or by interacting with TGF-beta activated SMAD proteins. Probably represses transcription via the recruitment of histone deacetylase proteins. (237 aa) | ||||
TGFBR2 | TGF-beta receptor type-2; Transmembrane serine/threonine kinase forming with the TGF- beta type I serine/threonine kinase receptor, TGFBR1, the non- promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinoge [...] (592 aa) | ||||
SMAD4 | Mothers against decapentaplegic homolog 4; In muscle physiology, plays a central role in the balance between atrophy and hypertrophy. When recruited by MSTN, promotes atrophy response via phosphorylated SMAD2/4. MSTN decrease causes SMAD4 release and subsequent recruitment by the BMP pathway to promote hypertrophy via phosphorylated SMAD1/5/8. Acts synergistically with SMAD1 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac- specific gene expression. Binds to SMAD binding elements (SBEs) (5'- GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (By [...] (552 aa) | ||||
INHBB | Inhibin beta B chain; Inhibins and activins inhibit and activate, respectively, the secretion of follitropin by the pituitary gland. Inhibins/activins are involved in regulating a number of diverse functions such as hypothalamic and pituitary hormone secretion, gonadal hormone secretion, germ cell development and maturation, erythroid differentiation, insulin secretion, nerve cell survival, embryonic axial development or bone growth, depending on their subunit composition. Inhibins appear to oppose the functions of activins. (407 aa) | ||||
NODAL | Nodal homolog; Essential for mesoderm formation and axial patterning during embryonic development; Belongs to the TGF-beta family. (347 aa) | ||||
GDF6 | Growth/differentiation factor 6; Growth factor that controls proliferation and cellular differentiation in the retina and bone formation. Plays a key role in regulating apoptosis during retinal development. Establishes dorsal- ventral positional information in the retina and controls the formation of the retinotectal map. Required for normal formation of bones and joints in the limbs, skull, digits and axial skeleton. Plays a key role in establishing boundaries between skeletal elements during development. Regulation of GDF6 expression seems to be a mechanism for evolving species-speci [...] (455 aa) |