Your Input: | |||||
| ATAD5 | ATPase family AAA domain-containing protein 5; Involved in DNA damage response. Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis. Modulates the RAD9A interaction with BCL2 and thereby induces DNA damages-induced apoptosis. (1844 aa) | ||||
| BLM | Bloom syndrome protein; ATP-dependent DNA helicase that unwinds single- and double- stranded DNA in a 3'-5' direction. Participates in DNA replication and repair. Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA. Negatively regulates sister chromatid exchange (SCE). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution. Binds single- stranded DNA (ssDNA), forked duplex DNA and DNA Holliday junction. (1417 aa) | ||||
| RAD51 | DNA repair protein RAD51 homolog 1; Plays an important role in homologous strand exchange, a key step in DNA repair through homologous recombination (HR). Binds to single and double-stranded DNA and exhibits DNA-dependent ATPase activity. Catalyzes the recognition of homology and strand exchange between homologous DNA partners to form a joint molecule between a processed DNA break and the repair template. Binds to single-stranded DNA in an ATP-dependent manner to form nucleoprotein filaments which are essential for the homology search and strand exchange. Part of a PALB2-scaffolded HR [...] (340 aa) | ||||
| UPF1 | Regulator of nonsense transcripts 1; RNA-dependent helicase and ATPase required for nonsense- mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD. Recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) (located 50-55 or more n [...] (1129 aa) | ||||
| MCM3 | DNA replication licensing factor MCM3; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (853 aa) | ||||
| CDC45 | Cell division control protein 45 homolog; Required for initiation of chromosomal DNA replication; Belongs to the CDC45 family. (598 aa) | ||||
| GINS3 | DNA replication complex GINS protein PSF3; The GINS complex plays an essential role in the initiation of DNA replication, and progression of DNA replication forks. GINS complex seems to bind preferentially to single-stranded DNA. Belongs to the GINS3/PSF3 family. (255 aa) | ||||
| BRCA2 | Breast cancer type 2 susceptibility protein; Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51- ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. [...] (3418 aa) | ||||
| PCNA | Proliferating cell nuclear antigen; Auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication by increasing the polymerase's processibility during elongation of the leading strand. Induces a robust stimulatory effect on the 3'-5' exonuclease and 3'- phosphodiesterase, but not apurinic-apyrimidinic (AP) endonuclease, APEX2 activities. Has to be loaded onto DNA in order to be able to stimulate APEX2. Plays a key role in DNA damage response (DDR) by being conveniently positioned at the replication fork to coordinate DNA replication with DNA rep [...] (261 aa) | ||||
| POLA1 | DNA polymerase alpha catalytic subunit; Catalytic subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis. During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, a regulatory subunit POLA2 and two primase subunits PRIM1 and PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1. The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA p [...] (1468 aa) | ||||
| ZNF830 | Zinc finger protein 830; May play a role in pre-mRNA splicing as component of the spliceosome. Acts as an important regulator of the cell cycle that participates in the maintenance of genome integrity. During cell cycle progression in embryonic fibroblast, prevents replication fork collapse, double-strand break formation and cell cycle checkpoint activation. Controls mitotic cell cycle progression and cell survival in rapidly proliferating intestinal epithelium and embryonic stem cells. During the embryo preimplantation, controls different aspects of M phase. During early oocyte growth [...] (372 aa) | ||||
| DNA2 | DNA replication ATP-dependent helicase/nuclease DNA2; Key enzyme involved in DNA replication and DNA repair in nucleus and mitochondrion. Involved in Okazaki fragments processing by cleaving long flaps that escape FEN1: flaps that are longer than 27 nucleotides are coated by replication protein A complex (RPA), leading to recruit DNA2 which cleaves the flap until it is too short to bind RPA and becomes a substrate for FEN1. Also involved in 5'-end resection of DNA during double-strand break (DSB) repair: recruited by BLM and mediates the cleavage of 5'-ssDNA, while the 3'-ssDNA cleavag [...] (1060 aa) | ||||
| RTEL1 | Regulator of telomere elongation helicase 1; ATP-dependent DNA helicase implicated in telomere-length regulation, DNA repair and the maintenance of genomic stability. Acts as an anti-recombinase to counteract toxic recombination and limit crossover during meiosis. Regulates meiotic recombination and crossover homeostasis by physically dissociating strand invasion events and thereby promotes noncrossover repair by meiotic synthesis dependent strand annealing (SDSA) as well as disassembly of D loop recombination intermediates. Also disassembles T loops and prevents telomere fragility by [...] (1300 aa) | ||||
| RTF2 | Replication termination factor 2; Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA ; Belongs to the rtf2 family. (336 aa) | ||||
| GMNN | Geminin; Inhibits DNA replication by preventing the incorporation of MCM complex into pre-replication complex (pre-RC). It is degraded during the mitotic phase of the cell cycle. Its destruction at the metaphase-anaphase transition permits replication in the succeeding cell cycle; Belongs to the geminin family. (209 aa) | ||||
| MCM4 | DNA replication licensing factor MCM4; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (863 aa) | ||||
| GINS1 | DNA replication complex GINS protein PSF1; Required for correct functioning of the GINS complex, a complex that plays an essential role in the initiation of DNA replication, and progression of DNA replication forks. GINS complex seems to bind preferentially to single-stranded DNA. Belongs to the GINS1/PSF1 family. (196 aa) | ||||
| LIG1 | DNA ligase 1; DNA ligase that seals nicks in double-stranded DNA during DNA replication, DNA recombination and DNA repair; Belongs to the ATP-dependent DNA ligase family. (919 aa) | ||||
| MCM6 | DNA replication licensing factor MCM6; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (821 aa) | ||||
| MCM2 | DNA replication licensing factor MCM2; Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differential [...] (904 aa) | ||||
| WRN | Werner syndrome ATP-dependent helicase; Multifunctional enzyme that has both magnesium and ATP- dependent DNA-helicase activity and 3'->5' exonuclease activity towards double-stranded DNA with a 5'-overhang. Has no nuclease activity towards single-stranded DNA or blunt-ended double-stranded DNA. Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or durin [...] (1432 aa) | ||||
| CDT1 | DNA replication factor Cdt1; Required for both DNA replication and mitosis. DNA replication licensing factor, required for pre- replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC). Required also for mitosis by promoting stable kinetochore-microtubule attachments. Potential oncogene (By similarity). Belongs to the Cdt1 family. (546 aa) | ||||
| FEN1 | Flap endonuclease 1; Structure-specific nuclease with 5'-flap endonuclease and 5'- 3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site- terminated flap. Acts as [...] (380 aa) | ||||
| DONSON | Protein downstream neighbor of Son; Replisome component that maintains genome stability by protecting stalled or damaged replication forks. After the induction of replication stress, required for the stabilization of stalled replication forks, the efficient activation of the intra-S-phase and G/2M cell-cycle checkpoints and the maintenance of genome stability. (566 aa) | ||||