STRINGSTRING
SLC8A1 SLC8A1 TRPM1 TRPM1 CACNB3 CACNB3 JPH4 JPH4 TRPV5 TRPV5 CACNA1C CACNA1C JPH3 JPH3 BAX BAX JPH1 JPH1 CACNA2D1 CACNA2D1 RYR2 RYR2 JPH2 JPH2 BAK1 BAK1 ADRA1A ADRA1A BCL2 BCL2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SLC8A1Sodium/calcium exchanger 1; Mediates the exchange of one Ca(2+) ion against three to four Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A1 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels ra [...] (973 aa)
TRPM1Transient receptor potential cation channel subfamily M member 1; Cation channel essential for the depolarizing photoresponse of retinal ON bipolar cells. It is part of the GRM6 signaling cascade. May play a role in metastasis suppression (By similarity). May act as a spontaneously active, calcium-permeable plasma membrane channel. (1642 aa)
CACNB3Voltage-dependent L-type calcium channel subunit beta-3; Regulatory subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. Increases CACNA1B peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). Increases CACNA1C peak calcium current and shifts the voltage dependencies of channel activation and inactivation (By similarity). (484 aa)
JPH4Junctophilin-4; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH4 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory (By similarity). (628 aa)
TRPV5Transient receptor potential cation channel subfamily V member 5; Constitutively active calcium selective cation channel thought to be involved in Ca(2+) reabsorption in kidney and intestine. Required for normal Ca(2+) reabsorption in the kidney distal convoluted tubules (By similarity). The channel is activated by low internal calcium level and the current exhibits an inward rectification. A Ca(2+)-dependent feedback regulation includes fast channel inactivation and slow current decay (By similarity). Heteromeric assembly with TRPV6 seems to modify channel properties. TRPV5-TRPV6 hete [...] (729 aa)
CACNA1CVoltage-dependent L-type calcium channel subunit alpha-1C; Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm (By similarity). Plays an important role in excitation-contraction coupling in the heart. Required for normal heart development and normal regulation of heart rhythm. Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essential for normal blood pressure regulation via [...] (2186 aa)
JPH3Junctophilin-3; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH3 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. (748 aa)
BAXApoptosis regulator BAX; Plays a role in the mitochondrial apoptotic process. Under normal conditions, BAX is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by BCL2L1/Bcl-xL, which avoids accumulation of toxic BAX levels at the mitochondrial outer membrane (MOM). Under stress conditions, undergoes a conformation change that causes translocation to the mitochondrion membrane, leading to the release of cytochrome c that then triggers apoptosis. Promotes activation of CASP3, and thereby apoptosis. (218 aa)
JPH1Junctophilin-1; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. (661 aa)
CACNA2D1Voltage-dependent calcium channel subunit alpha-2/delta-1; The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation- contraction coupling (By similarity). (1091 aa)
RYR2Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] (4967 aa)
JPH2Junctophilin-2 N-terminal fragment; [Junctophilin-2]: Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes. Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads (By similarity). Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its in [...] (696 aa)
BAK1Bcl-2 homologous antagonist/killer; Plays a role in the mitochondrial apoptosic process. Upon arrival of cell death signals, promotes mitochondrial outer membrane (MOM) permeabilization by oligomerizing to form pores within the MOM. This releases apoptogenic factors into the cytosol, including cytochrome c, promoting the activation of caspase 9 which in turn processes and activates the effector caspases. (211 aa)
ADRA1AAlpha-1A adrenergic receptor; This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol- calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. Belongs to the G-protein coupled receptor 1 family. Adrenergic receptor subfamily. ADRA1A sub-subfamily. (475 aa)
BCL2Apoptosis regulator Bcl-2; Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1). May attenuate inflammation by impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release. (239 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (20%) [HD]