| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| BAK1 | BAX | ENSP00000363591 | ENSP00000293288 | Bcl-2 homologous antagonist/killer; Plays a role in the mitochondrial apoptosic process. Upon arrival of cell death signals, promotes mitochondrial outer membrane (MOM) permeabilization by oligomerizing to form pores within the MOM. This releases apoptogenic factors into the cytosol, including cytochrome c, promoting the activation of caspase 9 which in turn processes and activates the effector caspases. | Apoptosis regulator BAX; Plays a role in the mitochondrial apoptotic process. Under normal conditions, BAX is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by BCL2L1/Bcl-xL, which avoids accumulation of toxic BAX levels at the mitochondrial outer membrane (MOM). Under stress conditions, undergoes a conformation change that causes translocation to the mitochondrion membrane, leading to the release of cytochrome c that then triggers apoptosis. Promotes activation of CASP3, and thereby apoptosis. | 0.996 |
| BAK1 | BCL2L11 | ENSP00000363591 | ENSP00000376943 | Bcl-2 homologous antagonist/killer; Plays a role in the mitochondrial apoptosic process. Upon arrival of cell death signals, promotes mitochondrial outer membrane (MOM) permeabilization by oligomerizing to form pores within the MOM. This releases apoptogenic factors into the cytosol, including cytochrome c, promoting the activation of caspase 9 which in turn processes and activates the effector caspases. | Bcl-2-like protein 11; Induces apoptosis and anoikis. Isoform BimL is more potent than isoform BimEL. Isoform Bim-alpha1, isoform Bim-alpha2 and isoform Bim-alpha3 induce apoptosis, although less potent than isoform BimEL, isoform BimL and isoform BimS. Isoform Bim-gamma induces apoptosis. Isoform Bim-alpha3 induces apoptosis possibly through a caspase- mediated pathway. Isoform BimAC and isoform BimABC lack the ability to induce apoptosis; Belongs to the Bcl-2 family. | 0.998 |
| BAX | BAK1 | ENSP00000293288 | ENSP00000363591 | Apoptosis regulator BAX; Plays a role in the mitochondrial apoptotic process. Under normal conditions, BAX is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by BCL2L1/Bcl-xL, which avoids accumulation of toxic BAX levels at the mitochondrial outer membrane (MOM). Under stress conditions, undergoes a conformation change that causes translocation to the mitochondrion membrane, leading to the release of cytochrome c that then triggers apoptosis. Promotes activation of CASP3, and thereby apoptosis. | Bcl-2 homologous antagonist/killer; Plays a role in the mitochondrial apoptosic process. Upon arrival of cell death signals, promotes mitochondrial outer membrane (MOM) permeabilization by oligomerizing to form pores within the MOM. This releases apoptogenic factors into the cytosol, including cytochrome c, promoting the activation of caspase 9 which in turn processes and activates the effector caspases. | 0.996 |
| BAX | BCL2L11 | ENSP00000293288 | ENSP00000376943 | Apoptosis regulator BAX; Plays a role in the mitochondrial apoptotic process. Under normal conditions, BAX is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by BCL2L1/Bcl-xL, which avoids accumulation of toxic BAX levels at the mitochondrial outer membrane (MOM). Under stress conditions, undergoes a conformation change that causes translocation to the mitochondrion membrane, leading to the release of cytochrome c that then triggers apoptosis. Promotes activation of CASP3, and thereby apoptosis. | Bcl-2-like protein 11; Induces apoptosis and anoikis. Isoform BimL is more potent than isoform BimEL. Isoform Bim-alpha1, isoform Bim-alpha2 and isoform Bim-alpha3 induce apoptosis, although less potent than isoform BimEL, isoform BimL and isoform BimS. Isoform Bim-gamma induces apoptosis. Isoform Bim-alpha3 induces apoptosis possibly through a caspase- mediated pathway. Isoform BimAC and isoform BimABC lack the ability to induce apoptosis; Belongs to the Bcl-2 family. | 0.998 |
| BCL2L11 | BAK1 | ENSP00000376943 | ENSP00000363591 | Bcl-2-like protein 11; Induces apoptosis and anoikis. Isoform BimL is more potent than isoform BimEL. Isoform Bim-alpha1, isoform Bim-alpha2 and isoform Bim-alpha3 induce apoptosis, although less potent than isoform BimEL, isoform BimL and isoform BimS. Isoform Bim-gamma induces apoptosis. Isoform Bim-alpha3 induces apoptosis possibly through a caspase- mediated pathway. Isoform BimAC and isoform BimABC lack the ability to induce apoptosis; Belongs to the Bcl-2 family. | Bcl-2 homologous antagonist/killer; Plays a role in the mitochondrial apoptosic process. Upon arrival of cell death signals, promotes mitochondrial outer membrane (MOM) permeabilization by oligomerizing to form pores within the MOM. This releases apoptogenic factors into the cytosol, including cytochrome c, promoting the activation of caspase 9 which in turn processes and activates the effector caspases. | 0.998 |
| BCL2L11 | BAX | ENSP00000376943 | ENSP00000293288 | Bcl-2-like protein 11; Induces apoptosis and anoikis. Isoform BimL is more potent than isoform BimEL. Isoform Bim-alpha1, isoform Bim-alpha2 and isoform Bim-alpha3 induce apoptosis, although less potent than isoform BimEL, isoform BimL and isoform BimS. Isoform Bim-gamma induces apoptosis. Isoform Bim-alpha3 induces apoptosis possibly through a caspase- mediated pathway. Isoform BimAC and isoform BimABC lack the ability to induce apoptosis; Belongs to the Bcl-2 family. | Apoptosis regulator BAX; Plays a role in the mitochondrial apoptotic process. Under normal conditions, BAX is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by BCL2L1/Bcl-xL, which avoids accumulation of toxic BAX levels at the mitochondrial outer membrane (MOM). Under stress conditions, undergoes a conformation change that causes translocation to the mitochondrion membrane, leading to the release of cytochrome c that then triggers apoptosis. Promotes activation of CASP3, and thereby apoptosis. | 0.998 |
| BCL2L11 | NOTCH1 | ENSP00000376943 | ENSP00000498587 | Bcl-2-like protein 11; Induces apoptosis and anoikis. Isoform BimL is more potent than isoform BimEL. Isoform Bim-alpha1, isoform Bim-alpha2 and isoform Bim-alpha3 induce apoptosis, although less potent than isoform BimEL, isoform BimL and isoform BimS. Isoform Bim-gamma induces apoptosis. Isoform Bim-alpha3 induces apoptosis possibly through a caspase- mediated pathway. Isoform BimAC and isoform BimABC lack the ability to induce apoptosis; Belongs to the Bcl-2 family. | Neurogenic locus notch homolog protein 1; Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the [...] | 0.404 |
| BMP7 | FGF4 | ENSP00000379204 | ENSP00000168712 | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | Fibroblast growth factor 4; Plays an important role in the regulation of embryonic development, cell proliferation, and cell differentiation. Required for normal limb and cardiac valve development during embryogenesis. | 0.600 |
| BMP7 | FOXC1 | ENSP00000379204 | ENSP00000493906 | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | Forkhead box protein C1; DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development. Acts either as a transcriptional activator or repressor. Binds to the consensus binding site 5'- [G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes. Upon DNA-binding, promotes DNA bending. Acts as a transcriptional coactivator. Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By s [...] | 0.519 |
| BMP7 | LEF1 | ENSP00000379204 | ENSP00000265165 | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | Lymphoid enhancer-binding factor 1; Participates in the Wnt signaling pathway. Activates transcription of target genes in the presence of CTNNB1 and EP300. May play a role in hair cell differentiation and follicle morphogenesis. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by LEF1 and CTNNB1. Regulates T-cell receptor alpha enhancer function. Binds DNA in a sequence-specific manner. PIAG antagonizes both Wnt-dependent and Wnt-independent activation by LEF1 (By similarity). Isoform 3 lacks the CTNNB1 interaction domain and may be an antagonist for Wnt signaling. Isoform 5 [...] | 0.633 |
| CCN1 | LRP5 | ENSP00000398736 | ENSP00000294304 | CCN family member 1; Promotes cell proliferation, chemotaxis, angiogenesis and cell adhesion. Appears to play a role in wound healing by up- regulating, in skin fibroblasts, the expression of a number of genes involved in angiogenesis, inflammation and matrix remodeling including VEGA-A, VEGA-C, MMP1, MMP3, TIMP1, uPA, PAI-1 and integrins alpha-3 and alpha-5. CCN1-mediated gene regulation is dependent on heparin-binding. Down-regulates the expression of alpha-1 and alpha-2 subunits of collagen type-1. Promotes cell adhesion and adhesive signaling through integrin alpha-6/beta-1, cell m [...] | Low-density lipoprotein receptor-related protein 5; Acts as a coreceptor with members of the frizzled family of seven-transmembrane spanning receptors to transduce signal by Wnt proteins. Activates the canonical Wnt signaling pathway that controls cell fate determination and self-renewal during embryonic development and adult tissue regeneration. In particular, may play an important role in the development of the posterior patterning of the epiblast during gastrulation (By similarity). During bone development, regulates osteoblast proliferation and differentiation thus determining bone [...] | 0.552 |
| CCN1 | NOTCH1 | ENSP00000398736 | ENSP00000498587 | CCN family member 1; Promotes cell proliferation, chemotaxis, angiogenesis and cell adhesion. Appears to play a role in wound healing by up- regulating, in skin fibroblasts, the expression of a number of genes involved in angiogenesis, inflammation and matrix remodeling including VEGA-A, VEGA-C, MMP1, MMP3, TIMP1, uPA, PAI-1 and integrins alpha-3 and alpha-5. CCN1-mediated gene regulation is dependent on heparin-binding. Down-regulates the expression of alpha-1 and alpha-2 subunits of collagen type-1. Promotes cell adhesion and adhesive signaling through integrin alpha-6/beta-1, cell m [...] | Neurogenic locus notch homolog protein 1; Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the [...] | 0.510 |
| FGF4 | BMP7 | ENSP00000168712 | ENSP00000379204 | Fibroblast growth factor 4; Plays an important role in the regulation of embryonic development, cell proliferation, and cell differentiation. Required for normal limb and cardiac valve development during embryogenesis. | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | 0.600 |
| FGF4 | HAND2 | ENSP00000168712 | ENSP00000352565 | Fibroblast growth factor 4; Plays an important role in the regulation of embryonic development, cell proliferation, and cell differentiation. Required for normal limb and cardiac valve development during embryogenesis. | Heart- and neural crest derivatives-expressed protein 2; Essential for cardiac morphogenesis, particularly for the formation of the right ventricle and of the aortic arch arteries. Required for vascular development and regulation of angiogenesis, possibly through a VEGF signaling pathway. Plays also an important role in limb development, particularly in the establishment of anterior- posterior polarization, acting as an upstream regulator of sonic hedgehog (SHH) induction in the limb bud. Is involved in the development of branchial arches, which give rise to unique structures in the he [...] | 0.446 |
| FGF4 | LEF1 | ENSP00000168712 | ENSP00000265165 | Fibroblast growth factor 4; Plays an important role in the regulation of embryonic development, cell proliferation, and cell differentiation. Required for normal limb and cardiac valve development during embryogenesis. | Lymphoid enhancer-binding factor 1; Participates in the Wnt signaling pathway. Activates transcription of target genes in the presence of CTNNB1 and EP300. May play a role in hair cell differentiation and follicle morphogenesis. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by LEF1 and CTNNB1. Regulates T-cell receptor alpha enhancer function. Binds DNA in a sequence-specific manner. PIAG antagonizes both Wnt-dependent and Wnt-independent activation by LEF1 (By similarity). Isoform 3 lacks the CTNNB1 interaction domain and may be an antagonist for Wnt signaling. Isoform 5 [...] | 0.463 |
| FGF4 | LRP5 | ENSP00000168712 | ENSP00000294304 | Fibroblast growth factor 4; Plays an important role in the regulation of embryonic development, cell proliferation, and cell differentiation. Required for normal limb and cardiac valve development during embryogenesis. | Low-density lipoprotein receptor-related protein 5; Acts as a coreceptor with members of the frizzled family of seven-transmembrane spanning receptors to transduce signal by Wnt proteins. Activates the canonical Wnt signaling pathway that controls cell fate determination and self-renewal during embryonic development and adult tissue regeneration. In particular, may play an important role in the development of the posterior patterning of the epiblast during gastrulation (By similarity). During bone development, regulates osteoblast proliferation and differentiation thus determining bone [...] | 0.410 |
| FGF4 | NKX2-5 | ENSP00000168712 | ENSP00000327758 | Fibroblast growth factor 4; Plays an important role in the regulation of embryonic development, cell proliferation, and cell differentiation. Required for normal limb and cardiac valve development during embryogenesis. | Homeobox protein Nkx-2.5; Implicated in commitment to and/or differentiation of the myocardial lineage. Acts as a transcriptional activator of ANF in cooperation with GATA4 (By similarity). Binds to the core DNA motif of NPPA promoter. It is transcriptionally controlled by PBX1 and acts as a transcriptional repressor of CDKN2B (By similarity). It is required for spleen development. | 0.435 |
| FGF4 | NOTCH1 | ENSP00000168712 | ENSP00000498587 | Fibroblast growth factor 4; Plays an important role in the regulation of embryonic development, cell proliferation, and cell differentiation. Required for normal limb and cardiac valve development during embryogenesis. | Neurogenic locus notch homolog protein 1; Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. Involved in angiogenesis; negatively regulates endothelial cell proliferation and migration and angiogenic sprouting. Involved in the [...] | 0.495 |
| FOXC1 | BMP7 | ENSP00000493906 | ENSP00000379204 | Forkhead box protein C1; DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development. Acts either as a transcriptional activator or repressor. Binds to the consensus binding site 5'- [G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes. Upon DNA-binding, promotes DNA bending. Acts as a transcriptional coactivator. Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By s [...] | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | 0.519 |
| FOXC1 | FOXC2 | ENSP00000493906 | ENSP00000497759 | Forkhead box protein C1; DNA-binding transcriptional factor that plays a role in a broad range of cellular and developmental processes such as eye, bones, cardiovascular, kidney and skin development. Acts either as a transcriptional activator or repressor. Binds to the consensus binding site 5'- [G/C][A/T]AAA[T/C]AA[A/C]-3' in promoter of target genes. Upon DNA-binding, promotes DNA bending. Acts as a transcriptional coactivator. Stimulates Indian hedgehog (Ihh)-induced target gene expression mediated by the transcription factor GLI2, and hence regulates endochondral ossification (By s [...] | Forkhead box protein C2; Transcriptional activator. Might be involved in the formation of special mesenchymal tissues. | 0.436 |