| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| BMP7 | FNDC5 | ENSP00000379204 | ENSP00000362570 | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | Fibronectin type III domain-containing protein 5; [Irisin]: Contrary to mouse, may not be involved in the beneficial effects of muscular exercise, nor in the induction of browning of human white adipose tissue. | 0.486 |
| BMP7 | INS | ENSP00000379204 | ENSP00000380432 | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.672 |
| FFAR4 | INS | ENSP00000360538 | ENSP00000380432 | Free fatty acid receptor 4; Receptor for medium and long-chain free fatty acids (FFAs). Signals via a G(q)/G(11)-coupled pathway. Acts as a receptor for omega- 3 fatty acids and mediates robust anti-inflammatory effects, particularly in macrophages and fat cells. The anti-inflammatory effects involve inhibition of TAK1 through a beta-arrestin 2 (ARRB2)/TAB1-dependent effect, but independent of the G(q)/G(11)- coupled pathway. Mediates potent insulin sensitizing and antidiabetic effects by repressing macrophage-induced tissue inflammation. May mediate the taste of fatty acids. Mediates [...] | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.744 |
| FNDC5 | BMP7 | ENSP00000362570 | ENSP00000379204 | Fibronectin type III domain-containing protein 5; [Irisin]: Contrary to mouse, may not be involved in the beneficial effects of muscular exercise, nor in the induction of browning of human white adipose tissue. | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | 0.486 |
| FNDC5 | INS | ENSP00000362570 | ENSP00000380432 | Fibronectin type III domain-containing protein 5; [Irisin]: Contrary to mouse, may not be involved in the beneficial effects of muscular exercise, nor in the induction of browning of human white adipose tissue. | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.666 |
| FNDC5 | METRNL | ENSP00000362570 | ENSP00000315731 | Fibronectin type III domain-containing protein 5; [Irisin]: Contrary to mouse, may not be involved in the beneficial effects of muscular exercise, nor in the induction of browning of human white adipose tissue. | Meteorin-like protein; Hormone induced following exercise or cold exposure that promotes energy expenditure. Induced either in the skeletal muscle after exercise or in adipose tissue following cold exposure and is present in the circulation. Able to stimulate energy expenditure associated with the browning of the white fat depots and improves glucose tolerance. Does not promote an increase in a thermogenic gene program via direct action on adipocytes, but acts by stimulating several immune cell subtypes to enter the adipose tissue and activate their prothermogenic actions. Stimulates a [...] | 0.648 |
| HNRNPU | ZBTB7B | ENSP00000491215 | ENSP00000406286 | Heterogeneous nuclear ribonucleoprotein U; DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression. Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability. Required for the localization of the long non-coding Xist RNA on the inactiv [...] | Zinc finger and BTB domain-containing protein 7B; Transcription regulator that acts as a key regulator of lineage commitment of immature T-cell precursors. Exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Necessary and sufficient for commitment of CD4 lineage, while its absence causes CD8 commitment. Development of immature T-cell precursors (thymocytes) to either the CD4 helper or CD8 killer T-cell lineages correlates precisely with their T-cell receptor specificity for major histocompatibility complex class II or class I mo [...] | 0.875 |
| INS | BMP7 | ENSP00000380432 | ENSP00000379204 | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | Bone morphogenetic protein 7; Induces cartilage and bone formation. May be the osteoinductive factor responsible for the phenomenon of epithelial osteogenesis. Plays a role in calcium regulation and bone homeostasis. | 0.672 |
| INS | FFAR4 | ENSP00000380432 | ENSP00000360538 | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | Free fatty acid receptor 4; Receptor for medium and long-chain free fatty acids (FFAs). Signals via a G(q)/G(11)-coupled pathway. Acts as a receptor for omega- 3 fatty acids and mediates robust anti-inflammatory effects, particularly in macrophages and fat cells. The anti-inflammatory effects involve inhibition of TAK1 through a beta-arrestin 2 (ARRB2)/TAB1-dependent effect, but independent of the G(q)/G(11)- coupled pathway. Mediates potent insulin sensitizing and antidiabetic effects by repressing macrophage-induced tissue inflammation. May mediate the taste of fatty acids. Mediates [...] | 0.744 |
| INS | FNDC5 | ENSP00000380432 | ENSP00000362570 | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | Fibronectin type III domain-containing protein 5; [Irisin]: Contrary to mouse, may not be involved in the beneficial effects of muscular exercise, nor in the induction of browning of human white adipose tissue. | 0.666 |
| INS | MAPK14 | ENSP00000380432 | ENSP00000229795 | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | Mitogen-activated protein kinase 14; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are a [...] | 0.757 |
| INS | PTGS2 | ENSP00000380432 | ENSP00000356438 | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] | 0.639 |
| MAPK14 | INS | ENSP00000229795 | ENSP00000380432 | Mitogen-activated protein kinase 14; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are a [...] | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.757 |
| MAPK14 | PTGS2 | ENSP00000229795 | ENSP00000356438 | Mitogen-activated protein kinase 14; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are a [...] | Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] | 0.774 |
| METRNL | FNDC5 | ENSP00000315731 | ENSP00000362570 | Meteorin-like protein; Hormone induced following exercise or cold exposure that promotes energy expenditure. Induced either in the skeletal muscle after exercise or in adipose tissue following cold exposure and is present in the circulation. Able to stimulate energy expenditure associated with the browning of the white fat depots and improves glucose tolerance. Does not promote an increase in a thermogenic gene program via direct action on adipocytes, but acts by stimulating several immune cell subtypes to enter the adipose tissue and activate their prothermogenic actions. Stimulates a [...] | Fibronectin type III domain-containing protein 5; [Irisin]: Contrary to mouse, may not be involved in the beneficial effects of muscular exercise, nor in the induction of browning of human white adipose tissue. | 0.648 |
| NAPEPLD | PTGS2 | ENSP00000407112 | ENSP00000356438 | N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D; Hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to produce N-acylethanolamines (NAEs) and phosphatidic acid. Responsible for the generation of these bioactive fatty acid ethanolamides (FAEs), including anandamide (N-arachidonoylethanolamine), the ligand of cannabinoid and vanilloid receptors. As a regulator of lipid metabolism in the adipose tissue, mediates the crosstalk between adipocytes, gut microbiota and immune cells to control body temperature and weight. In particular, regulates energy homeostasis by promoting col [...] | Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] | 0.477 |
| PTGS2 | INS | ENSP00000356438 | ENSP00000380432 | Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.639 |
| PTGS2 | MAPK14 | ENSP00000356438 | ENSP00000229795 | Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] | Mitogen-activated protein kinase 14; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are a [...] | 0.774 |
| PTGS2 | NAPEPLD | ENSP00000356438 | ENSP00000407112 | Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] | N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D; Hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to produce N-acylethanolamines (NAEs) and phosphatidic acid. Responsible for the generation of these bioactive fatty acid ethanolamides (FAEs), including anandamide (N-arachidonoylethanolamine), the ligand of cannabinoid and vanilloid receptors. As a regulator of lipid metabolism in the adipose tissue, mediates the crosstalk between adipocytes, gut microbiota and immune cells to control body temperature and weight. In particular, regulates energy homeostasis by promoting col [...] | 0.477 |
| ZBTB7B | HNRNPU | ENSP00000406286 | ENSP00000491215 | Zinc finger and BTB domain-containing protein 7B; Transcription regulator that acts as a key regulator of lineage commitment of immature T-cell precursors. Exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Necessary and sufficient for commitment of CD4 lineage, while its absence causes CD8 commitment. Development of immature T-cell precursors (thymocytes) to either the CD4 helper or CD8 killer T-cell lineages correlates precisely with their T-cell receptor specificity for major histocompatibility complex class II or class I mo [...] | Heterogeneous nuclear ribonucleoprotein U; DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression. Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability. Required for the localization of the long non-coding Xist RNA on the inactiv [...] | 0.875 |