node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ABCD4 | LMBRD1 | ENSP00000349396 | ENSP00000497690 | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | 0.990 |
ABCD4 | MMACHC | ENSP00000349396 | ENSP00000383840 | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | 0.735 |
ABCD4 | MMADHC | ENSP00000349396 | ENSP00000389060 | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | Methylmalonic aciduria and homocystinuria type D protein, mitochondrial; Involved in cobalamin metabolism. Plays a role in regulating the biosynthesis of two coenzymes, methylcobalamin and adenosylcobalamin. Plays a role in regulating the proportion of methylcobalamin and adenosylcobalamin. Promotes oxidation of cob(II)alamin bound to MMACHC. | 0.714 |
ABCD4 | MTR | ENSP00000349396 | ENSP00000355536 | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.607 |
ABCD4 | MTRR | ENSP00000349396 | ENSP00000402510 | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. | 0.503 |
LMBRD1 | ABCD4 | ENSP00000497690 | ENSP00000349396 | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | 0.990 |
LMBRD1 | MMACHC | ENSP00000497690 | ENSP00000383840 | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | 0.972 |
LMBRD1 | MMADHC | ENSP00000497690 | ENSP00000389060 | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | Methylmalonic aciduria and homocystinuria type D protein, mitochondrial; Involved in cobalamin metabolism. Plays a role in regulating the biosynthesis of two coenzymes, methylcobalamin and adenosylcobalamin. Plays a role in regulating the proportion of methylcobalamin and adenosylcobalamin. Promotes oxidation of cob(II)alamin bound to MMACHC. | 0.989 |
LMBRD1 | MTR | ENSP00000497690 | ENSP00000355536 | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.949 |
LMBRD1 | MTRR | ENSP00000497690 | ENSP00000402510 | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. | 0.945 |
MMACHC | ABCD4 | ENSP00000383840 | ENSP00000349396 | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | 0.735 |
MMACHC | LMBRD1 | ENSP00000383840 | ENSP00000497690 | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | 0.972 |
MMACHC | MMADHC | ENSP00000383840 | ENSP00000389060 | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | Methylmalonic aciduria and homocystinuria type D protein, mitochondrial; Involved in cobalamin metabolism. Plays a role in regulating the biosynthesis of two coenzymes, methylcobalamin and adenosylcobalamin. Plays a role in regulating the proportion of methylcobalamin and adenosylcobalamin. Promotes oxidation of cob(II)alamin bound to MMACHC. | 0.991 |
MMACHC | MTR | ENSP00000383840 | ENSP00000355536 | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.962 |
MMACHC | MTRR | ENSP00000383840 | ENSP00000402510 | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. | 0.881 |
MMACHC | PRDX1 | ENSP00000383840 | ENSP00000262746 | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | Peroxiredoxin-1; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. Might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of H(2)O(2). Reduces an intramolecular disulfide bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic motor neuron differentiation (By s [...] | 0.439 |
MMADHC | ABCD4 | ENSP00000389060 | ENSP00000349396 | Methylmalonic aciduria and homocystinuria type D protein, mitochondrial; Involved in cobalamin metabolism. Plays a role in regulating the biosynthesis of two coenzymes, methylcobalamin and adenosylcobalamin. Plays a role in regulating the proportion of methylcobalamin and adenosylcobalamin. Promotes oxidation of cob(II)alamin bound to MMACHC. | ATP-binding cassette sub-family D member 4; May be involved in intracellular processing of vitamin B12 (cobalamin). Could play a role in the lysosomal release of vitamin B12 into the cytoplasm. | 0.714 |
MMADHC | LMBRD1 | ENSP00000389060 | ENSP00000497690 | Methylmalonic aciduria and homocystinuria type D protein, mitochondrial; Involved in cobalamin metabolism. Plays a role in regulating the biosynthesis of two coenzymes, methylcobalamin and adenosylcobalamin. Plays a role in regulating the proportion of methylcobalamin and adenosylcobalamin. Promotes oxidation of cob(II)alamin bound to MMACHC. | Probable lysosomal cobalamin transporter; Probable lysosomal cobalamin transporter. Required to export cobalamin from lysosomes allowing its conversion to cofactors. Belongs to the LIMR family. LMBRD1 subfamily. | 0.989 |
MMADHC | MMACHC | ENSP00000389060 | ENSP00000383840 | Methylmalonic aciduria and homocystinuria type D protein, mitochondrial; Involved in cobalamin metabolism. Plays a role in regulating the biosynthesis of two coenzymes, methylcobalamin and adenosylcobalamin. Plays a role in regulating the proportion of methylcobalamin and adenosylcobalamin. Promotes oxidation of cob(II)alamin bound to MMACHC. | Methylmalonic aciduria and homocystinuria type C protein; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione-dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalamin and oth [...] | 0.991 |
MMADHC | MTR | ENSP00000389060 | ENSP00000355536 | Methylmalonic aciduria and homocystinuria type D protein, mitochondrial; Involved in cobalamin metabolism. Plays a role in regulating the biosynthesis of two coenzymes, methylcobalamin and adenosylcobalamin. Plays a role in regulating the proportion of methylcobalamin and adenosylcobalamin. Promotes oxidation of cob(II)alamin bound to MMACHC. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.977 |