STRINGSTRING
SCN1A SCN1A KCNQ2 KCNQ2 ATP1A2 ATP1A2 PCDH19 PCDH19 STXBP1 STXBP1 KCNQ3 KCNQ3 GABRA1 GABRA1 SCN1B SCN1B GABRG2 GABRG2 PRRT2 PRRT2 CACNA1A CACNA1A SCN2A SCN2A
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SCN1ASodium channel protein type 1 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Plays a key role in brain, probably by regulating the moment when neurotransmitters are released in neurons. Involved in sensory perception of mechanical pain: activation in somatosensory neurons induces pain without neurogenic inflammatio [...] (2009 aa)
KCNQ2Potassium voltage-gated channel subfamily KQT member 2; Associates with KCNQ3 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. KCNQ2/KCNQ3 current is blocked by linopirdine and XE991, and activated by the anticonvulsant retigabine. As the native M-chan [...] (872 aa)
ATP1A2Sodium/potassium-transporting ATPase subunit alpha-2; This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. (1020 aa)
PCDH19Protocadherin-19; Potential calcium-dependent cell-adhesion protein. (1148 aa)
STXBP1Syntaxin-binding protein 1; Participates in the regulation of synaptic vesicle docking and fusion through interaction with GTP-binding proteins (By similarity). Essential for neurotransmission and binds syntaxin, a component of the synaptic vesicle fusion machinery probably in a 1:1 ratio. Can interact with syntaxins 1, 2, and 3 but not syntaxin 4. May play a role in determining the specificity of intracellular fusion reactions. (603 aa)
KCNQ3Potassium voltage-gated channel subfamily KQT member 3; Associates with KCNQ2 or KCNQ5 to form a potassium channel with essentially identical properties to the channel underlying the native M-current, a slowly activating and deactivating potassium conductance which plays a critical role in determining the subthreshold electrical excitability of neurons as well as the responsiveness to synaptic inputs. Therefore, it is important in the regulation of neuronal excitability. (872 aa)
GABRA1Gamma-aminobutyric acid receptor subunit alpha-1; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By si [...] (456 aa)
SCN1BSodium channel subunit beta-1; Regulatory subunit of multiple voltage-gated sodium channel complexes that play important roles in excitable membranes in brain, heart and skeletal muscle. Enhances the presence of the pore-forming alpha subunit at the cell surface and modulates channel gating characteristics and the rate of channel inactivation. Modulates the activity of multiple pore-forming alpha subunits, such as SCN1A, SCN2A, SCN3A, SCN4A, SCN5A and SCN10A. (268 aa)
GABRG2Gamma-aminobutyric acid receptor subunit gamma-2; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By si [...] (515 aa)
PRRT2Proline-rich transmembrane protein 2; As a component of the outer core of AMPAR complex, may be involved in synaptic transmission in the central nervous system. In hippocampal neurons, in presynaptic terminals, plays an important role in the final steps of neurotransmitter release, possibly by regulating Ca(2+)-sensing. In the cerebellum, may inhibit SNARE complex formation and downregulate short-term facilitation. (394 aa)
CACNA1AVoltage-dependent P/Q-type calcium channel subunit alpha-1A; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1A gives rise to P and/or Q- type calcium currents. P/Q-type calcium channels belong to the 'high- voltage activated' (HVA) group and are specifically blocked by the spider omega-agatoxin-IVA (AC P54282) (By similarity). [...] (2512 aa)
SCN2ASodium channel protein type 2 subunit alpha; Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. Implicated in the regulation of hippocampal replay occurring within sharp wave ripples (SPW-R) important for memory (By similarity). Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.2/SCN2A subfamily. (2005 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (14%) [HD]