Your Input: | |||||
OSTM1 | Osteopetrosis-associated transmembrane protein 1; Required for osteoclast and melanocyte maturation and function; Belongs to the OSTM1 family. (334 aa) | ||||
ABCC6 | Multidrug resistance-associated protein 6; [Isoform 1]: May participate directly in the active transport of drugs into subcellular organelles or influence drug distribution indirectly. Transports glutathione conjugates as leukotriene-c4 (LTC4) and N-ethylmaleimide S-glutathione (NEM-GS). Belongs to the ABC transporter superfamily. ABCC family. Conjugate transporter (TC 3.A.1.208) subfamily. (1503 aa) | ||||
NDUFS7 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (213 aa) | ||||
IL1RN | Interleukin-1 receptor antagonist protein; Inhibits the activity of interleukin-1 by binding to receptor IL1R1 and preventing its association with the coreceptor IL1RAP for signaling. Has no interleukin-1 like activity. Binds functional interleukin-1 receptor IL1R1 with greater affinity than decoy receptor IL1R2; however, the physiological relevance of the latter association is unsure. (180 aa) | ||||
NDUFAF1 | Complex I intermediate-associated protein 30, mitochondrial; Chaperone protein involved in early stages of the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). (327 aa) | ||||
FOXRED1 | FAD-dependent oxidoreductase domain-containing protein 1; Required for the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). Involved in mid-late stages of complex I assembly. (486 aa) | ||||
NDUFS3 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (264 aa) | ||||
ABCB4 | Phosphatidylcholine translocator ABCB4; Energy-dependent phospholipid efflux translocator that acts as a positive regulator of biliary lipid secretion. Functions as a floppase that translocates specifically phosphatidylcholine (PC) from the inner to the outer leaflet of the canalicular membrane bilayer into the canaliculi of hepatocytes. Translocation of PC makes the biliary phospholipids available for extraction into the canaliculi lumen by bile salt mixed micelles and therefore protects the biliary tree from the detergent activity of bile salts. Plays a role in the recruitment of pho [...] (1286 aa) | ||||
NDUFB10 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (172 aa) | ||||
AMT | Aminomethyltransferase, mitochondrial; The glycine cleavage system catalyzes the degradation of glycine; Belongs to the GcvT family. (403 aa) | ||||
NDUFS6 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (124 aa) | ||||
NDUFB9 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (179 aa) | ||||
NUBPL | Iron-sulfur protein NUBPL; Required for the assembly of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I). May deliver of one or more Fe-S clusters to complex I subunits. (319 aa) | ||||
NDUFAF2 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 2; Acts as a molecular chaperone for mitochondrial complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (169 aa) | ||||
NDUFS4 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (175 aa) | ||||
NDUFS8 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone. (210 aa) | ||||
GCSH | Glycine cleavage system H protein, mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The H protein (GCSH) shuttles the methylamine group of glycine from the P protein (GLDC) to the T protein (GCST). Belongs to the GcvH family. (173 aa) | ||||
NDUFAF3 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3; Essential factor for the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). (184 aa) | ||||
NDUFV2 | NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (249 aa) | ||||
IKZF1 | DNA-binding protein Ikaros; Transcription regulator of hematopoietic cell differentiation. Binds gamma-satellite DNA. Plays a role in the development of lymphocytes, B- and T-cells. Binds and activates the enhancer (delta-A element) of the CD3-delta gene. Repressor of the TDT (fikzfterminal deoxynucleotidyltransferase) gene during thymocyte differentiation. Regulates transcription through association with both HDAC-dependent and HDAC-independent complexes. Targets the 2 chromatin-remodeling complexes, NuRD and BAF (SWI/SNF), in a single complex (PYR complex), to the beta-globin locus i [...] (519 aa) | ||||
PLPBP | Pyridoxal phosphate homeostasis protein; Pyridoxal 5'-phosphate (PLP)-binding protein, which may be involved in intracellular homeostatic regulation of pyridoxal 5'- phosphate (PLP), the active form of vitamin B6. (275 aa) | ||||
SON | Protein SON; RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core prom [...] (2426 aa) | ||||
TMEM126B | Complex I assembly factor TMEM126B, mitochondrial; Chaperone protein involved in the assembly of the mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). Participates in constructing the membrane arm of complex I. Belongs to the TMEM126 family. (230 aa) | ||||
SLC6A9 | Sodium- and chloride-dependent glycine transporter 1; Terminates the action of glycine by its high affinity sodium- dependent reuptake into presynaptic terminals. May play a role in regulation of glycine levels in NMDA receptor-mediated neurotransmission. (706 aa) | ||||
MT-ND1 | NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (318 aa) | ||||
MT-ND2 | NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (347 aa) | ||||
MT-ND3 | NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (115 aa) | ||||
NDUFS2 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (463 aa) | ||||
NDUFAF4 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4; Involved in the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). May be involved in cell proliferation and survival of hormone-dependent tumor cells. May be a regulator of breast tumor cell invasion. (175 aa) | ||||
NDUFA1 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (70 aa) | ||||
NDUFAF5 | Arginine-hydroxylase NDUFAF5, mitochondrial; Arginine hydroxylase involved in the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I, MT- ND1) at early stages. Acts by mediating hydroxylation of 'Arg-111' of NDUFS7. May also have methyltransferase activity (Probable). (345 aa) | ||||
ATAD3A | ATPase family AAA domain-containing protein 3A; Essential for mitochondrial network organization, mitochondrial metabolism and cell growth at organism and cellular level. May play an important role in mitochondrial protein synthesis. May also participate in mitochondrial DNA replication. May bind to mitochondrial DNA D-loops and contribute to nucleoid stability. Required for enhanced channeling of cholesterol for hormone-dependent steroidogenesis. (634 aa) | ||||
GLDC | Glycine dehydrogenase (decarboxylating), mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The P protein (GLDC) binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (GCSH). (1020 aa) | ||||
ALDH7A1 | Alpha-aminoadipic semialdehyde dehydrogenase; Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism; Belongs to the aldehyde dehydrogenase family. (539 aa) | ||||
NDUFA11 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (228 aa) | ||||
NDUFS1 | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized. (741 aa) | ||||
NDUFAF8 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 8; Involved in the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I, MT-ND1). Required to stabilize NDUFAF5. (74 aa) | ||||
SLC13A5 | Solute carrier family 13 member 5; High-affinity sodium/citrate cotransporter that mediates citrate entry into cells. The transport process is electrogenic; it is the trivalent form of citrate rather than the divalent form that is recognized as a substrate. May facilitate the utilization of circulating citrate for the generation of metabolic energy and for the synthesis of fatty acids and cholesterol. (568 aa) | ||||
NDUFB3 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (98 aa) | ||||
TIMMDC1 | Complex I assembly factor TIMMDC1, mitochondrial; Chaperone protein involved in the assembly of the mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). Participates in constructing the membrane arm of complex I. Belongs to the Tim17/Tim22/Tim23 family. (285 aa) | ||||
NDUFA6 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Required for proper complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (154 aa) | ||||
CTCF | Transcriptional repressor CTCF; Chromatin binding factor that binds to DNA sequence specific sites. Involved in transcriptional regulation by binding to chromatin insulators and preventing interaction between promoter and nearby enhancers and silencers. Acts as transcriptional repressor binding to promoters of vertebrate MYC gene and BAG1 gene. Also binds to the PLK and PIM1 promoters. Acts as a transcriptional activator of APP. Regulates APOA1/C3/A4/A5 gene cluster and controls MHC class II gene expression. Plays an essential role in oocyte and preimplantation embryo development by ac [...] (727 aa) | ||||
RPL11 | 60S ribosomal protein L11; Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through [...] (178 aa) | ||||
NDUFV1 | NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (464 aa) | ||||
ATP8B1 | Phospholipid-transporting ATPase IC; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. May play a role in asymmetric distribution of phospholipids in the canicular membrane. May have a role in transport of bile acids into the canaliculus, uptake of bile a [...] (1251 aa) | ||||
ENPP1 | Ectonucleotide pyrophosphatase/phosphodiesterase family member 1, secreted form; Nucleotide pyrophosphatase that generates diphosphate (PPi) and functions in bone mineralization and soft tissue calcification by regulating pyrophosphate levels (By similarity). PPi inhibits bone mineralization and soft tissue calcification by binding to nascent hydroxyapatite crystals, thereby preventing further growth of these crystals. Preferentially hydrolyzes ATP, but can also hydrolyze other nucleoside 5' triphosphates such as GTP, CTP, TTP and UTP to their corresponding monophosphates with release [...] (925 aa) |