node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ARG1 | ARG2 | ENSP00000349446 | ENSP00000261783 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | 0.933 |
ARG1 | ASL | ENSP00000349446 | ENSP00000307188 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Argininosuccinate lyase. | 0.974 |
ARG1 | ASS1 | ENSP00000349446 | ENSP00000361471 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Argininosuccinate synthase; One of the enzymes of the urea cycle, the metabolic pathway transforming neurotoxic amonia produced by protein catabolism into inocuous urea in the liver of ureotelic animals. Catalyzes the formation of arginosuccinate from aspartate, citrulline and ATP and together with ASL it is responsible for the biosynthesis of arginine in most body tissues; Belongs to the argininosuccinate synthase family. Type 1 subfamily. | 0.811 |
ARG1 | CPS1 | ENSP00000349446 | ENSP00000402608 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Carbamoyl-phosphate synthase [ammonia], mitochondrial; Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. | 0.711 |
ARG1 | NAGS | ENSP00000349446 | ENSP00000293404 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | N-acetylglutamate synthase conserved domain form; Plays a role in the regulation of ureagenesis by producing the essential cofactor N-acetylglutamate (NAG), thus modulating carbamoylphosphate synthase I (CPS1) activity. Belongs to the acetyltransferase family. | 0.722 |
ARG1 | OTC | ENSP00000349446 | ENSP00000039007 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Ornithine carbamoyltransferase, mitochondrial; Ornithine carbamoyltransferase; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. OTCase family. | 0.993 |
ARG1 | SLC25A15 | ENSP00000349446 | ENSP00000342267 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Mitochondrial ornithine transporter 1; Ornithine-citrulline antiporter. Connects the cytosolic and the intramitochondrial reactions of the urea cycle by exchanging cytosolic ornithine with matrix citrulline. The stoichiometry is close to 1:1 (By similarity). Belongs to the mitochondrial carrier (TC 2.A.29) family. | 0.415 |
ARG2 | ARG1 | ENSP00000261783 | ENSP00000349446 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | 0.933 |
ARG2 | ASL | ENSP00000261783 | ENSP00000307188 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Argininosuccinate lyase. | 0.975 |
ARG2 | ASS1 | ENSP00000261783 | ENSP00000361471 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Argininosuccinate synthase; One of the enzymes of the urea cycle, the metabolic pathway transforming neurotoxic amonia produced by protein catabolism into inocuous urea in the liver of ureotelic animals. Catalyzes the formation of arginosuccinate from aspartate, citrulline and ATP and together with ASL it is responsible for the biosynthesis of arginine in most body tissues; Belongs to the argininosuccinate synthase family. Type 1 subfamily. | 0.877 |
ARG2 | CPS1 | ENSP00000261783 | ENSP00000402608 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Carbamoyl-phosphate synthase [ammonia], mitochondrial; Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. | 0.650 |
ARG2 | NAGS | ENSP00000261783 | ENSP00000293404 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | N-acetylglutamate synthase conserved domain form; Plays a role in the regulation of ureagenesis by producing the essential cofactor N-acetylglutamate (NAG), thus modulating carbamoylphosphate synthase I (CPS1) activity. Belongs to the acetyltransferase family. | 0.705 |
ARG2 | OTC | ENSP00000261783 | ENSP00000039007 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Ornithine carbamoyltransferase, mitochondrial; Ornithine carbamoyltransferase; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. OTCase family. | 0.993 |
ASL | ARG1 | ENSP00000307188 | ENSP00000349446 | Argininosuccinate lyase. | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | 0.974 |
ASL | ARG2 | ENSP00000307188 | ENSP00000261783 | Argininosuccinate lyase. | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | 0.975 |
ASL | ASS1 | ENSP00000307188 | ENSP00000361471 | Argininosuccinate lyase. | Argininosuccinate synthase; One of the enzymes of the urea cycle, the metabolic pathway transforming neurotoxic amonia produced by protein catabolism into inocuous urea in the liver of ureotelic animals. Catalyzes the formation of arginosuccinate from aspartate, citrulline and ATP and together with ASL it is responsible for the biosynthesis of arginine in most body tissues; Belongs to the argininosuccinate synthase family. Type 1 subfamily. | 0.999 |
ASL | CPS1 | ENSP00000307188 | ENSP00000402608 | Argininosuccinate lyase. | Carbamoyl-phosphate synthase [ammonia], mitochondrial; Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. | 0.872 |
ASL | NAGS | ENSP00000307188 | ENSP00000293404 | Argininosuccinate lyase. | N-acetylglutamate synthase conserved domain form; Plays a role in the regulation of ureagenesis by producing the essential cofactor N-acetylglutamate (NAG), thus modulating carbamoylphosphate synthase I (CPS1) activity. Belongs to the acetyltransferase family. | 0.994 |
ASL | OTC | ENSP00000307188 | ENSP00000039007 | Argininosuccinate lyase. | Ornithine carbamoyltransferase, mitochondrial; Ornithine carbamoyltransferase; Belongs to the aspartate/ornithine carbamoyltransferase superfamily. OTCase family. | 0.963 |
ASL | SLC25A15 | ENSP00000307188 | ENSP00000342267 | Argininosuccinate lyase. | Mitochondrial ornithine transporter 1; Ornithine-citrulline antiporter. Connects the cytosolic and the intramitochondrial reactions of the urea cycle by exchanging cytosolic ornithine with matrix citrulline. The stoichiometry is close to 1:1 (By similarity). Belongs to the mitochondrial carrier (TC 2.A.29) family. | 0.589 |