STRINGSTRING
NAT16 NAT16 NAA80 NAA80 NAA40 NAA40 SAT1 SAT1 KAT14 KAT14 NAA60 NAA60 NAT8L NAT8L NAA10 NAA10 SATL1 SATL1 NAA30 NAA30 NAT9 NAT9 NAT14 NAT14 GNPNAT1 GNPNAT1 KAT2A KAT2A NAA50 NAA50 AANAT AANAT ELP3 ELP3 NAT10 NAT10 KAT2B KAT2B SAT2 SAT2 NAT8 NAT8 NAA11 NAA11 NAGS NAGS NAA20 NAA20
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NAT16Probable N-acetyltransferase 16; Probable N-acetyltransferase. Shows only trace activity toward L-His and no N-acetyltransferase activity toward other amino acids. The physiological substrate of this enzyme is unknown. (369 aa)
NAA80N-alpha-acetyltransferase 80; N-alpha-acetyltransferase that specifically mediates the acetylation of the acidic amino terminus of processed forms of beta- and gamma-actin (ACTB and ACTG, respectively). N-terminal acetylation of processed beta- and gamma- actin regulates actin filament depolymerization and elongation. In vivo, preferentially displays N-terminal acetyltransferase activity towards acid N-terminal sequences starting with Asp-Asp-Asp and Glu-Glu-Glu. In vitro, shows high activity towards Met-Asp-Glu-Leu and Met-Asp-Asp-Asp. May act as a tumor suppressor. (308 aa)
NAA40N-alpha-acetyltransferase 40; N-alpha-acetyltransferase that specifically mediates the acetylation of the N-terminal residues of histones H4 and H2A. In contrast to other N-alpha- acetyltransferase, has a very specific selectivity for histones H4 and H2A N-terminus and specifically recognizes the 'Ser-Gly-Arg-Gly sequence'. Acts as a negative regulator of apoptosis. May play a role in hepatic lipid metabolism (By similarity). Belongs to the acetyltransferase family. NAA40 subfamily. (237 aa)
SAT1Diamine acetyltransferase 1; Enzyme which catalyzes the acetylation of polyamines. Substrate specificity: norspermidine = spermidine >> spermine > N(1)- acetylspermine > putrescine. This highly regulated enzyme allows a fine attenuation of the intracellular concentration of polyamines. Also involved in the regulation of polyamine transport out of cells. Acts on 1,3-diaminopropane, 1,5-diaminopentane, putrescine, spermidine (forming N(1)- and N(8)-acetylspermidine), spermine, N(1)-acetylspermidine and N(8)-acetylspermidine; Belongs to the acetyltransferase family. (171 aa)
KAT14Cysteine-rich protein 2-binding protein; Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. May function as a scaffold for the ATAC complex to promote ATAC complex stability. Has also weak histone acetyltransferase activity toward histone H4. Required for the normal progression through G1 and G2/M phases of the cell cycle. (782 aa)
NAA60N-alpha-acetyltransferase 60; N-alpha-acetyltransferase that specifically mediates the acetylation of N-terminal residues of the transmembrane proteins, with a strong preference for N-termini facing the cytosol. Displays N-terminal acetyltransferase activity towards a range of N- terminal sequences including those starting with Met-Lys, Met-Val, Met- Ala and Met-Met. Required for normal chromosomal segregation during anaphase. May also show histone acetyltransferase activity; such results are however unclear in vivo and would require additional experimental evidences. Belongs to the ac [...] (249 aa)
NAT8LN-acetylaspartate synthetase; Plays a role in the regulation of lipogenesis by producing N- acetylaspartate acid (NAA), a brain-specific metabolite. NAA occurs in high concentration in brain and its hydrolysis plays a significant part in the maintenance of intact white matter. Promotes dopamine uptake by regulating TNF-alpha expression. Attenuates methamphetamine-induced inhibition of dopamine uptake. (302 aa)
NAA10N-alpha-acetyltransferase 10; Catalytic subunit of the N-terminal acetyltransferase A (NatA) complex which displays alpha (N-terminal) acetyltransferase activity. Acetylates amino termini that are devoid of initiator methionine. The alpha (N-terminal) acetyltransferase activity may be important for vascular, hematopoietic and neuronal growth and development. Without NAA15, displays epsilon (internal) acetyltransferase activity towards HIF1A, thereby promoting its degradation. Represses MYLK kinase activity by acetylation, and thus represses tumor cell migration. Acetylates, and stabili [...] (235 aa)
SATL1Spermidine/spermine N1-acetyl transferase like 1. (632 aa)
NAA30N-alpha-acetyltransferase 30; Catalytic subunit of the N-terminal acetyltransferase C (NatC) complex. Catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Leu-Ala and Met-Leu-Gly. Necessary for the lysosomal localization and function of ARL8B sugeesting that ARL8B is a NatC substrate. Belongs to the acetyltransferase family. MAK3 subfamily. (362 aa)
NAT9N-acetyltransferase 9; Belongs to the acetyltransferase family. GNAT subfamily. (212 aa)
NAT14N-acetyltransferase 14; Probable acetyltransferase that binds the 5'-GGACTACAG-3' sequence of coproporphyrinogen oxidase promoter. Able to activate transcription of a reporter construct in vitro. (206 aa)
GNPNAT1Glucosamine-phosphate N-acetyltransferase 1; Belongs to the acetyltransferase family. GNA1 subfamily. (184 aa)
KAT2AHistone acetyltransferase KAT2A; Protein lysine acyltransferase that can act as a acetyltransferase, glutaryltransferase or succinyltransferase, depending on the context. Acts as a histone lysine succinyltransferase: catalyzes succinylation of histone H3 on 'Lys-79' (H3K79succ), with a maximum frequency around the transcription start sites of genes. Succinylation of histones gives a specific tag for epigenetic transcription activation. Association with the 2-oxoglutarate dehydrogenase complex, which provides succinyl-CoA, is required for histone succinylation. In different complexes, f [...] (837 aa)
NAA50N-alpha-acetyltransferase 50; N-alpha-acetyltransferase that acetylates the N-terminus of proteins that retain their initiating methionine. Has a broad substrate specificity: able to acetylate the initiator methionine of most peptides, except for those with a proline in second position. Also displays N-epsilon-acetyltransferase activity by mediating acetylation of the side chain of specific lysines on proteins. Autoacetylates in vivo. The relevance of N-epsilon-acetyltransferase activity is however unclear: able to acetylate H4 in vitro, but this result has not been confirmed in vivo. [...] (169 aa)
AANATSerotonin N-acetyltransferase; Controls the night/day rhythm of melatonin production in the pineal gland. Catalyzes the N-acetylation of serotonin into N- acetylserotonin, the penultimate step in the synthesis of melatonin. Belongs to the acetyltransferase family. AANAT subfamily. (252 aa)
ELP3Elongator complex protein 3; Catalytic tRNA acetyltransferase subunit of the RNA polymerase II elongator complex, which is a component of the RNA polymerase II (Pol II) holoenzyme and is involved in transcriptional elongation. The elongator complex is required for multiple tRNA modifications, including mcm5U (5-methoxycarbonylmethyl uridine), mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine), and ncm5U (5- carbamoylmethyl uridine). In the elongator complex, acts as a tRNA uridine(34) acetyltransferase by mediating formation of carboxymethyluridine in the wobble base at position 34 in tRN [...] (547 aa)
NAT10RNA cytidine acetyltransferase; RNA cytidine acetyltransferase that catalyzes the formation of N(4)-acetylcytidine (ac4C) modification on mRNAs, 18S rRNA and tRNAs. Catalyzes ac4C modification of a broad range of mRNAs, enhancing mRNA stability and translation. mRNA ac4C modification is frequently present within wobble cytidine sites and promotes translation efficiency. Mediates the formation of ac4C at position 1842 in 18S rRNA. May also catalyze the formation of ac4C at position 1337 in 18S rRNA (By similarity). Required for early nucleolar cleavages of precursor rRNA at sites A0, A1 [...] (1025 aa)
KAT2BHistone acetyltransferase KAT2B; Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles. Also acetylates non- histone proteins, such as ACLY, PLK4, RRP9/U3-55K and TBX5. Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-ARNTL/BMAL1 and CLOCK-ARNTL/BMAL1 h [...] (832 aa)
SAT2Diamine acetyltransferase 2; Enzyme which catalyzes the acetylation of polyamines. Substrate specificity: norspermidine > spermidine = spermine >> N(1)acetylspermine = putrescine. (170 aa)
NAT8N-acetyltransferase 8; Acetylates the free alpha-amino group of cysteine S- conjugates to form mercapturic acids. This is the final step in a major route for detoxification of a wide variety of reactive electrophiles which starts with their incorporation into glutathione S-conjugates. The glutathione S-conjugates are then further processed into cysteine S-conjugates and finally mercapturic acids which are water soluble and can be readily excreted in urine or bile. Alternatively, may have a lysine N-acetyltransferase activity catalyzing peptidyl-lysine N6-acetylation of various proteins [...] (227 aa)
NAA11N-alpha-acetyltransferase 11; Displays alpha (N-terminal) acetyltransferase activity. Proposed alternative catalytic subunit of the N-terminal acetyltransferase A (NatA) complex; Belongs to the acetyltransferase family. ARD1 subfamily. (229 aa)
NAGSN-acetylglutamate synthase conserved domain form; Plays a role in the regulation of ureagenesis by producing the essential cofactor N-acetylglutamate (NAG), thus modulating carbamoylphosphate synthase I (CPS1) activity. Belongs to the acetyltransferase family. (534 aa)
NAA20N-alpha-acetyltransferase 20; Catalytic subunit of the NatB complex which catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Asp, Met-Glu, Met-Asn and Met-Gln. Proteins with cell cycle functions are overrepresented in the pool of NatB substrates. Required for maintaining the structure and function of actomyosin fibers and for proper cellular migration; Belongs to the acetyltransferase family. ARD1 subfamily. (178 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (40%) [HD]