Your Input: | |||||
GABRA3 | Gamma-aminobutyric acid receptor subunit alpha-3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (492 aa) | ||||
GLRA2 | Glycine receptor subunit alpha-2; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel opening is also triggered by taurine and beta-alanine. Plays a role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Plays a role in cellular responses to ethanol. (452 aa) | ||||
CHRNA10 | Neuronal acetylcholine receptor subunit alpha-10; Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding may induce an extensive change in conformation that affects all subunits and leads to opening of an ion- conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and reduci [...] (450 aa) | ||||
CHRND | Acetylcholine receptor subunit delta; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Delta/CHRND sub- subfamily. (517 aa) | ||||
HTR3B | 5-hydroxytryptamine receptor 3B; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel. (441 aa) | ||||
CHRNA1 | Acetylcholine receptor subunit alpha; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (482 aa) | ||||
CHRNB4 | Neuronal acetylcholine receptor subunit beta-4; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Beta-4/CHRNB4 sub- subfamily. (498 aa) | ||||
GABRA4 | Gamma-aminobutyric acid receptor subunit alpha-4; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Gamma-aminobutyric acid receptor (TC 1.A.9.5) subfamily. GABRA4 sub- subfamily. (554 aa) | ||||
GLRB | Glycine receptor subunit beta; Glycine receptors are ligand-gated chloride channels. GLRB does not form ligand-gated ion channels by itself, but is part of heteromeric ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Heteropentameric channels composed of GLRB and GLRA1 are activated by lower glycine levels than homopentameric GLRA1. Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. (497 aa) | ||||
GLRA3 | Glycine receptor subunit alpha-3; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel characteristics depend on the subunit composition; heteropentameric channels display faster channel closure (By similarity). Plays an important role in the down-regulation of neuronal excitability (By similarity). Contributes to the generation of inhibitory postsynaptic currents (By similarity). Contributes to increased pain perception in response to increased prostaglandin E2 levels (By similarity). Plays a role in cellular responses to [...] (464 aa) | ||||
GABRA6 | Gamma-aminobutyric acid receptor subunit alpha-6; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (453 aa) | ||||
GABRB2 | Gamma-aminobutyric acid receptor subunit beta-2; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By sim [...] (512 aa) | ||||
CHRNA6 | Neuronal acetylcholine receptor subunit alpha-6; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Alpha-6/CHRNA6 sub- subfamily. (494 aa) | ||||
CHRNB3 | Neuronal acetylcholine receptor subunit beta-3; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (458 aa) | ||||
GABRG1 | Gamma-aminobutyric acid receptor subunit gamma-1; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (465 aa) | ||||
GABRB1 | Gamma-aminobutyric acid receptor subunit beta-1; Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel. (474 aa) | ||||
CHRNA5 | Neuronal acetylcholine receptor subunit alpha-5; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (468 aa) | ||||
CHRFAM7A | CHRNA7-FAM7A fusion protein; CHRNA7 fusion. (412 aa) | ||||
CHRNB1 | Acetylcholine receptor subunit beta; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Beta-1/CHRNB1 sub- subfamily. (501 aa) | ||||
GABRB3 | Gamma-aminobutyric acid receptor subunit beta-3; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By sim [...] (473 aa) | ||||
CHRNA9 | Neuronal acetylcholine receptor subunit alpha-9; Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding induces a conformation change that leads to the opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and reducing the range of dynamic hearing. This ma [...] (479 aa) | ||||
CHRNA3 | Neuronal acetylcholine receptor subunit alpha-3; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (505 aa) | ||||
HTR3C | 5-hydroxytryptamine receptor 3C; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel. (447 aa) | ||||
ZACN | Zinc-activated ligand-gated ion channel; Zinc-activated ligand-gated ion channel. (412 aa) | ||||
HTR3A | 5-hydroxytryptamine receptor 3A; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses in neurons. It is a cation-specific, but otherwise relatively nonselective, ion channel. (516 aa) | ||||
CHRNB2 | Neuronal acetylcholine receptor subunit beta-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodiun ions. (502 aa) | ||||
CHRNA4 | Neuronal acetylcholine receptor subunit alpha-4; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Alpha-4/CHRNA4 sub- subfamily. (627 aa) | ||||
GABRE | Gamma-aminobutyric acid receptor subunit epsilon; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (506 aa) | ||||
GABRD | Gamma-aminobutyric acid receptor subunit delta; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (452 aa) | ||||
HTR3D | 5-hydroxytryptamine receptor 3D; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel; Belongs to the ligand-gated ion channel (TC 1.A.9) family. 5-hydroxytryptamine receptor (TC 1.A.9.2) subfamily. HTR3D sub- subfamily. (454 aa) | ||||
GABRA5 | Gamma-aminobutyric acid receptor subunit alpha-5; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (462 aa) | ||||
CHRNA2 | Neuronal acetylcholine receptor subunit alpha-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Alpha-2/CHRNA2 sub- subfamily. (529 aa) | ||||
GABRR2 | Gamma-aminobutyric acid receptor subunit rho-2; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission. (465 aa) | ||||
GABRA1 | Gamma-aminobutyric acid receptor subunit alpha-1; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By si [...] (456 aa) | ||||
HTR3E | 5-hydroxytryptamine receptor 3E; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel; Belongs to the ligand-gated ion channel (TC 1.A.9) family. 5-hydroxytryptamine receptor (TC 1.A.9.2) subfamily. HTR3E sub- subfamily. (482 aa) | ||||
CHRNA7 | Neuronal acetylcholine receptor subunit alpha-7; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin. (531 aa) | ||||
GABRG2 | Gamma-aminobutyric acid receptor subunit gamma-2; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By si [...] (515 aa) | ||||
GLRA1 | Glycine receptor subunit alpha-1; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel opening is also triggered by taurine and beta- alanine. Channel characteristics depend on the subunit composition; heteropentameric channels are activated by lower glycine levels and display faster desensitization. Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol. Potentiation of channel activity by intoxi [...] (457 aa) | ||||
GABRR1 | Gamma-aminobutyric acid receptor subunit rho-1; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission. (479 aa) | ||||
GABRA2 | Gamma-aminobutyric acid receptor subunit alpha-2; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain (By similarity). Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel (By similarity). The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present [...] (511 aa) | ||||
GABRP | Gamma-aminobutyric acid receptor subunit pi; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Gamma-aminobutyric acid receptor (TC 1.A.9.5) subfa [...] (440 aa) | ||||
GABRQ | Gamma-aminobutyric acid receptor subunit theta; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (632 aa) | ||||
GABRG3 | Gamma-aminobutyric acid receptor subunit gamma-3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Gamma-aminobutyric acid receptor (TC 1.A.9.5) subfamily. GABRG3 sub- subfamily. (467 aa) | ||||
GABRR3 | Gamma-aminobutyric acid receptor subunit rho-3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (467 aa) | ||||
CHRNE | Acetylcholine receptor subunit epsilon; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (493 aa) | ||||
CHRNG | Acetylcholine receptor subunit gamma; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (517 aa) |